Задача №15733

№15733

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Найти натуральное число \( n \) из равенства \( 3^{2} *3^{5} *3^{8}... 3^{ 3n -1}= 27^{5} \)

Ответ

3

Решение № 15731:

\( 3^{2+5+8+...+3n-1}=3^{15} , 2+5+8+...3n-1=15 \) В левой части уравнения имеем сумму членов арифметической прогресии \( S_{k} \), где \( a_{1}=2 , d=3 , a_{k}=3n-1 , k=\frac{a_{k}-a_{1}}{d}+1=\frac{3n-1-2}{3}+1 = n \) Тогда \( S_{k}=\frac{a_{1}+a_{k}}{2}*k=\frac{2+3n-1}{2} *n= \frac{ 3n^{ 2} +n}{ 2} \), и уравнение принимает вид \( \frac{ 3n^{ 2} +n}{ 2}=15, 3n^{2}+n-30=0 \) , откуда \( n = 3 \)

Поделиться в социальных сетях

Комментарии (0)