№15723
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{\sqrt{5}}\left ( 4^{x}-6 \right )-\log _{\sqrt{5}}\left ( 2^{x}-2 \right )=2 \)
Ответ
2
Решение № 15721:
ОДЗ: \( \left\{\begin{matrix} 4^{x}-6> 0 & & \\ 2^{x}-2 > 0 & & \end{matrix}\right. \) Имеем \( \log _{\sqrt{5}}\frac{4^{x}-6}{2^{x}-2}=2 , \frac{2^{2x}-6}{2^{2}-2}= 5 , 2^{2x}-5*2^{x}+4=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), найдем \( \left (2^{x} \right )_{ 1}=1 \), откуда имеем \( x_{1}= 0 \), или \( \left ( 2^{x} \right )_{2}=4 \), откуда имеем \( x_{2}=2; x_{1}=0 \) не подходит по ОДЗ.