Задача №15718

№15718

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{x+1}\left ( x-0.5 \right )=\log _{x-0.5}\left ( x+1 \right ) \)

Ответ

1

Решение № 15716:

ОДЗ: \( \left\{\begin{matrix} 0< x+1\neq 1, & & \\ 0< x-0.5\neq 1 & & \end{matrix}\right. 0.5< x\neq 1.5 \) Умножив обе части уравнения на \( \log _{x+1}\left ( x-0.5 \right \)neq 0 \), получим \( \log _{x+1}^{2}\left ( x-0.5 \right )=1 \Rightarrow \log _{x+1}\left ( x-0.5 \right )=-1 \Rightarrow x-0.5=\frac{1}{x+1}, 2x^{2}+x-3=0, x_{1}=-\frac{3}{2} \) (не подходит по ОДЗ), \( x_{2}=1 \); или \( \log _{x+1}\left ( x-0.5 \right )=1, x-0.5=x+1\), нет решений.

Поделиться в социальных сетях

Комментарии (0)