№15712
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \frac{2-\lg 4+\lg 0.12}{\lg \left ( \sqrt{3x+1}+4 \right )-\lg 2x}=1 \)
Ответ
1
Решение № 15710:
ОДЗ: \( \left\{\begin{matrix} x> 0& & & \\ 3x+1\geq 0, x> 0 & & & \\ lg\left ( \sqrt{3x+1}+4 \right \)neq lg2x & & & \end{matrix} \right \) Из условия \( \lg 100-\lg 4+\lg 0.12=\lg \left ( \sqrt{3x+1}+4 \right )-\lg 2x\Rightarrow \lg \frac{100*0.12}{4}=\lg \frac{\sqrt{3x+1}+4}{2x}, 3=\frac{\sqrt{3x+1}+4}{2x}\Rightarrow \sqrt{3x+1}=6x-4, 6x-4\geq 0\Rightarrow \left\{\begin{matrix} 3x+1=36x^{2}-48x+16 & & \\ 6x -4 \geq 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 12x^{2}17x+5=0 & & \\ x \geq \frac{2}{3} & & \end{matrix}\right \) Корнями уравнения будут \( x_{1}= \frac{5}{ 12}, x_{2}=1; x_{1}= \frac{5}{12} \) не подходит.