№15736
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{12}\left ( 4^{3x}+3x-9 \right )=3x-3\log _{12}27 \)
Ответ
3
Решение № 15734:
ОДЗ: \( 4^{3x}+3x-9> 0 \) Перепишем уравнение в виде \( \log _{12}\left ( 4^{3x}+3x-9 \right )+\log _{12}27^{x}=3x \Rightarrow \log _{12}27^{x}\left ( 4^{3x}+3x-9 \right )=3x \), откуда \( 27^{x}\left ( 4^{3x}+3x-9 \right )=12^{3x} \Leftrightarrow 4^{3x}+3x-9=4^{3x}, 3x-9=0, x=3 \)