Задача №15736

№15736

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{12}\left ( 4^{3x}+3x-9 \right )=3x-3\log _{12}27 \)

Ответ

3

Решение № 15734:

ОДЗ: \( 4^{3x}+3x-9> 0 \) Перепишем уравнение в виде \( \log _{12}\left ( 4^{3x}+3x-9 \right )+\log _{12}27^{x}=3x \Rightarrow \log _{12}27^{x}\left ( 4^{3x}+3x-9 \right )=3x \), откуда \( 27^{x}\left ( 4^{3x}+3x-9 \right )=12^{3x} \Leftrightarrow 4^{3x}+3x-9=4^{3x}, 3x-9=0, x=3 \)

Поделиться в социальных сетях

Комментарии (0)