Задача №15710

№15710

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \left ( 16*5^{2x-1}-2*5^{x-1}-0.048 \right \)lg \left ( x^{3}+2x+1 \right )=0 \)

Ответ

0

Решение № 15708:

ОДЗ: \( x^{3}+2x+1> 0 \) Из условия \( 16*5^{2x-1}-2^{x-1}-0.048=0 \), или \( \lg \left ( x^{3}+2x+1 \right ) \) Перепишем первое уравнение в виде \( \frac{16}{5}*5^{2x}-\frac{2}{5}*5^{x}-0.048=0 \Leftrightarrow 16*5^{2x}-2*5^{x}-0.24=0 \) Решая это уравнение как квадратное относительно \( 5^{x} \), получим \( 5^{x}=-\frac{3}{40} \) (нет решений), или \( 5^{x}=5^{-1} \Leftrightarrow x_{1}=-1 \) (не подходит по ОДЗ). Из второго уравнения имеем \( x^{3}+2x+1=1 \Leftrightarrow x^{3}+2x=0 \Leftrightarrow x\left ( x^{2}+2 \right )=0, x_{3}=0, x^{2}+2\neq 0 \)

Поделиться в социальных сетях

Комментарии (0)