№15709
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 27*2^{-3x}+9*2^{x}-2^{3x}-27*2^{-x}=8 \)
Ответ
0
Решение № 15707:
Преобразуем уравнение: \( 27+9*2^{4x}-2^{6x}-27*2^{2x}=8*2^{3x} \Leftrightarrow 2^{6x}-9*2^{4x}+8*2^{3x}+27*2^{2x}-27=0 \Leftrightarrow 2^{6x}-2^{4x}-8*2^{4x}+8*2^{3x}+27*2^{x}-27=0 \Leftrightarrow 2^{4x}\left ( 2^{2x}-1 \right )-8*2^{3x}\left ( 2^{x}-1 \right )+27\left ( 2^{x}-1 \right )=0 \Leftrightarrow 2^{4x}\left ( 2^{x}-1 \right \)left ( 2^{x}+1 \right )-8*2^{3x}\left ( 2^{x}-1 \right )+27\left ( 2^{x}-1 \right )=0 \Leftrightarrow \left ( 2^{x}-1 \right \)left ( 2^{5x}+2^{4x}-8*2^{3x}+27 \right )=0 \), откуда \( 2^{x}=1, x_{1}=0 \) Уравнение \( 2^{5x}+2^{4x}-8*2^{3x}+27=0 \) решений не имеет.