№15726
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{a^{2}}x^{2}+\log _{a}\left (x-1 \right )=\log _{a}\log _{\sqrt{5}}5 \)
Ответ
2
Решение № 15724:
ОДЗ: \( \left\{\begin{matrix} x> 1, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Из условия имеем \( \log _{a}x+\log _{a}\left ( x-1 \right )=\log _{a}2 \Rightarrow \log _{a}x\left ( x-1 \right )=\log _{a}2 \), откуда \( x^{2}-x-2=0 \Rightarrow x_{1}=2, x_{2}=-1; x_{2}=-1 \) не подходит по ОДЗ.