Задача №15202

№15202

Экзамены с этой задачей: Уравнения смешанного типа

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 9^{x}+6^{x}=2^{2x+1} \)

Ответ

0

Решение № 15200:

Перепишем уравнение в виде \( 3^{2x}+2^{x}*3^{x}-2*2^{2x}=0 \), и разделим его на \( 2^{2x}\neq 0 \) Тогда \( \left ( \frac{3}{2} \right )^{2x}+\left ( \frac{3}{2} \right )^{x}-2=0 \Rightarrow \left ( \left ( \frac{3}{2} \right )^{x} \right )_{1}=-2 \), (нет решений) или \( \left ( \left ( \frac{3}{2} \right )^{x} \right )_{2}=1 \Rightarrow x=0 \)

Поделиться в социальных сетях

Комментарии (0)