№15715
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{2}\left ( 4*3^{x}-6 \right )-\log _{2}\left ( 9^{x}-6 \right )=1 \)
Ответ
1
Решение № 15713:
ОДЗ: \( \left\{\begin{matrix} 4*3^{x}-6> 0 & & \\ 9^{x}-6> 0 & & \end{matrix}\right. \) Имеем \( \log _{2}\frac{4*3^{x}-6}{3^{2x}-6}=1, \frac{4*3^{x}-6}{3^{2x}-6}=2\Rightarrow 3^{2x}-2*3^{x}-3=0 \) Решая его как квадратное относительно \( 3^{x} \), найдем \( 3^{x}=-1,\varnothing \); или \( 3^{x}=3 \), откуда \( x=1 \)