№15719
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( x\log _{x+1}5*\log _{\sqrt[3]{1/5}}\left ( x+1 \right )=\frac{x-4}{x}\)
Ответ
1
Решение № 15717:
ОДЗ: \( \left\{\begin{matrix} 0< x+1\neq 1, & & \\ x\neq 0 & & \end{matrix}\right. \Leftrightarrow -1< x\neq 0 \) Перейдем к основанию 5. Имеем \( \frac{5}{\log_{5}\left ( x+1 \right )}*\left ( -3 \right \)log_{5}\left ( x+1 \right )=\frac{x-4}{x}, -3x=\frac{x-4}{x} \), при \( \log_{5}\left ( x+1 \right \)neq 0 \) Отсюда \( 3x^{2}+x-4=0, x_{1}=-\frac{4}{3}, x_{2}=1; x_{1}=-\frac{4}{3} \) не подходит по ОДЗ.