№15720
Экзамены с этой задачей: Уравнения смешанного типа
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \frac{\log _{2}\left ( x^{3}+3x^{2}+2x-1 \right )}{\log _{2}\left ( x^{3}+2x^{2}-3x+5 \right )}=\log _{2x}x+\log _{2x}2 \)
Ответ
1
Решение № 15718:
ОДЗ: \( \left\{\begin{matrix} x^{3}+3x^{2}+2x-1> 0, & & & \\ 0< x^{3}+2x^{2}-3x+5\neq 1 & & & \\ 0< x\neq \frac{1}{2} & & & \end{matrix}\right. \) По формуле замены основания имеем \( \log _{x^{3}+2x^{2}-3x+5}\left ( x^{3}+3x^{2}+2x-1 \right )=\log _{2x}2x \Leftrightarrow \log _{x^{3}+2x^{2}-3x+5}\left ( x^{3}+3x^{2}+2x-1 \right )=1 \Leftrightarrow x^{3}+3x^{2}+2x-1=x^{3}+2x^{2}-3x+5 \Leftrightarrow x^{2}+5x-6=0 \Rightarrow x_{1}=1, x_{2}=-6; x_{2}=-6 \) не подходит по ОДЗ.