Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}=\left ( \frac{n-1}{n} \right )^{5} \)

Решение №7428: \( \lim_{n \to \propto}\frac{\left ( -1 \right )^{n}6^{n}-5^{n+1}}{5^{n}-\left ( -1 \right )^{n+1}6^{n+1}}=\lim_{n \to \propto}\frac{1-5\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}}{\left ( -1 \right )^{n}\left ( \frac{5}{6} \right )^{n}+6}=\frac{1}{6} \)

Ответ: \frac{1}{6}

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}- \sqrt{n}}\)

Решение №7431: Умножив числитель и знаменатель дроби на сопряженные выражения, получим \(\lim_{n \to \propto} x_{n}=\lim_{n \to \propto}\frac{\sqrt{n^{2}+1}-n}{\sqrt{n+1}-\sqrt{n}}=\lim_{n \to \propto}\frac{\left ( n^{2}+1-n^{2} \right )\left ( \sqrt{n+1}+\sqrt{n} \right )}{\left ( \sqrt{n^{2}+1}+n \right )\left ( n+1-n \right )}\lim_{n \to \propto}\frac{n\left ( \sqrt{\frac{1}{n}+\frac{1}{n^{2}}}+\sqrt{\frac{1}{n}} \right )}{n\left ( \sqrt{1+\frac{1}{n^{2}}}+1 \right )}=0\)

Ответ: 0

Найдите \(\lim_{n \to \propto}\sin ^{2}\left ( \pi \sqrt{n^{2}+n} \right ) \)

Решение №7443: Так как \(\forall x\sin ^{2}x=\sin ^{2}\left ( x-\pi k \right ), то \lim_{n \to \propto}\sin ^{2}\left ( \pi \sqrt{n^{2}+n}-\pi n \right )=\lim_{n \to \propto}\sin ^{2}\frac{\pi \left ( n^{2}+n-n^{2} \right )}{\sqrt{n^{2}+n}+n}=\lim_{n \to \propto}\sin ^{2}\frac{\pi n}{n\left ( \sqrt{1+\frac{1}{n}}+1 \right )}=1 \)

Ответ: NaN

Найдите\( \lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{10^{n}+n!}{2^{n}+\left ( n+1 \right )!}\)

Решение №7444: \( \forall n\in N 0< \frac{10^{n}+n!}{2^{n}+\left ( n+1 \right )!}< \frac{10^{n}+n!}{\left ( n+1 \right )!}=\frac{10^{n}}{\left ( n+1 \right )!}+\frac{1}{n+1}\), а так как \(\lim_{n \to \propto}\left ( \frac{10^{n}}{\left ( n+1 \right )!}+\frac{1}{n+1} \right )=0, то \lim_{n \to \propto}\frac{10^{n}+n!}{2^{n}+\left ( n+1 \right )!}=0 \)

Ответ: 0

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{\left ( -3 \right )^{n^{2}-n}}{\left ( n^{3} \right )!}\)

Решение №7445: \( \forall n\in N n^{2}-n< n^{3}\),следовательно \(0< \frac{\left ( 3 \right )^{n^{2}-n}}{\left ( n^{3} \right )!}< \frac{3^{n^{3}}}{\left ( n^{3} \right )!}=\frac{3^{t}}{t!}\) .А так как \(\lim_{n \to \propto } \frac{3^{t}}{t!}=0 (если n\rightarrow \propto , то t=n^{3}\rightarrow \propto )\),то и \( \lim_{n \to \propto}\frac{3^{n^{2}-n}}{\left ( n^{3} \right )!}=0\). Значит, последовательность \(\left \{ x_{n} \right \}\) есть произведение бесконечно малой последовательности на ограниченную \(\left ( -1 \right )^{n}. \)

Ответ: 0

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами.\(x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+...+\frac{1}{\sqrt{n^{2}+n+1}} \)

Решение №7447: \(x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+...+\frac{1}{\sqrt{n^{2}+n+1}}\leqslant \frac{n+1}{\sqrt{n^{2}+1}}= \frac{n\left ( 1+\frac{1}{n} \right )}{n\sqrt{1+\frac{1}{n^{2}}}}=y_{n}\). Но \(\forall n\in N 1\leqslant x_{n}\leqslant y_{n}\), а так как \(y_{n}\rightarrow 1 n\rightarrow \propto\) ,то \(\lim x_{n}=1. \)

Ответ: 1

Докажите, что последовательность \(\left \{ x_{n} \right \}\) сходится: \(x_{n}=\frac{\left ( 2n \right )!!}{\left ( 2n+1 \right )!!} \)

Решение №7454: \( \frac{x_{n+1}}{x_{n}}=\frac{2n+2}{2n+3}< 1. \)

Ответ: NaN

Докажите, что \(\left \{ x_{n} \right \}\) сходится, и найдите \( \lim_{n \to \propto} x_{n} : x_{1}=13, x_{n+1}=\sqrt{12+x_{n}}\)

Пока решения данной задачи,увы,нет...

Ответ: 4

Выясните, сходится ли последовательность \(\left \{ x_{n} \right \} \) и найдите предел сходящейся последовательности: \(0\leqslant x_{1}\leqslant 1, x_{n+1}=x_{n}-x_{n}^{2}, где n\in N \)

Решение №7460: Предположим, что существует предел последовательности \(\left \{ x_{n} \right \}\) равный t, и найдем его. По условию \(t=-\sqrt{1-t}\). Так как t< 0, то \(t=\frac{-1-\sqrt{5}}{2}\). Докажем существование. Если \(x_{1}< \frac{-1-\sqrt{5}}{2}\), то последовательность \(\left \{ x_{n} \right \}\) возрастает и ограничена сверху. Можно проверить, что \(x_{1}< x_{2}< \frac{-1-\sqrt{5}}{2}\). По индукции докажем, что \(x_{k}< x_{k+1}< t, где x_{k+1}=-\sqrt{1-x_{k}}\). Выясним, верно ли, что \(x_{k}< -\sqrt{1-x_{k}}< t. 1) \sqrt{1-x_{k}}< -x_{k}\Leftarrow 1-x_{k}< x_{k}^{2}\Leftrightarrow x_{k}^{2}+x_{k}-1> 0\Leftarrow x_{k}< \frac{-1-\sqrt{5}}{2}. 2) -\sqrt{1-x}< t\Leftrightarrow \sqrt{1-x_{k}}> \frac{1+\sqrt{5}}{2}\Leftrightarrow 1-x_{k}> \frac{6+2\sqrt{5}}{2}\Leftrightarrow x_{k}< \frac{-\sqrt{5}-1}{2}. Если x_{1}> \frac{-1-\sqrt{5}}{2}\), то \(x_{2}=-\sqrt{1-x_{1}}> t\Leftrightarrow \sqrt{1-x_{1}}< -t\Leftrightarrow 0\leqslant 1-x_{1}< t^{2}\Leftarrow x_{1}> 1-t^{2}=t\). Далее по индукции доказываем, что \(t< x_{k+1}< x_{k}. \)

Ответ: NaN

Выясните, сходится ли последовательность \(\left \{ x_{n} \right \} \) и найдите предел сходящейся последовательности: \(x_{1}> 0, x_{n+1}=\frac{1}{2}\left ( x_{n}+\frac{a}{x_{n}} \right )\), где \(a> 0, n\in N \)

Решение №7461: Все члены последовательности положительны, коль скоро первый её член положителен. Рассмотрим разность \(x_{n+1}-x_{n}=\frac{1}{2}\left ( \frac{a}{x_{n}}-x_{n} \right )=\frac{1}{2}\left ( \frac{a-x_{n}^{2}}{x_{n}} \right )\). Знак этой разности определяется соотношением между \(x_{n}\) и \(\sqrt{a}\). Применив неравенство о среднем арифметическом и среднем геометрическом для двух чисел \(\frac{a}{x_{n}} и x_{n}\), получим \(x_{n+1}=\frac{x_{n}+\frac{a}{x_{n}}}{2}\geqslant \sqrt{x_{n}*\frac{a}{x_{n}}}=\sqrt{a}\). Итак, все члены последовательности, начиная со второго, больше \(\sqrt{a}\), а потому последовательность убывает, начиная с \(x_{2}\). Таким образом, последовательность убывает и ограничена снизу (например, числом \(\sqrt{a}\) или просто нулём), а значит, имеет предел. Обозначим\( \lim_{n \to \propto }x_{n}=\lim n_{\to \propto} x_{n+1}=b\). Совершив предельный переход в равенстве, получим, что\(b=\frac{1}{2}\left ( b+\frac{a}{b} \right )\). А следовательно, \(b^{2}=a b=\sqrt{a}\)( так как \(\forall n\in N x_{n}> 0)\)

Ответ: NaN

Найдите \(\lim_{n \to \propto} x_{n}, если x_{n}=\left ( 1+\frac{1}{2n} \right )^{n}\)

Решение №7465: \( \lim_{n \to \propto}\left ( 1+\frac{1}{2n} \right )^{n}=\lim_{n \to \propto}\left ( \left ( 1+\frac{1}{2n} \right )^{2n} \right )^{\frac{1}{2}}=\sqrt{e} \)

Ответ: \sqrt{e}

Подпоследовательности \(\left \{ x_{2k} \right \} и \left \{ x_{2k-1} \right \}\) последовательности \( \left \{ x_{n} \right \}\) имеют один и тот же преде. Докажите, что и сама последовательность \( \left \{ x_{n} \right \} \)сходится к тому же пределу.

Решение №7466: Возьмём произвольную окрестность точки а. Пусть члены одной подпоследовательности принадлежат окрестности \(V_{\varepsilon }\left ( a \right )\), начиная с члена \(x_{n_{1}}\), а другой — начиная с \(x_{n_{2}}\). Тогда члены последовательности \(\left \{ x_{n} \right \}\) будут принадлежать \(V_{\varepsilon }\left ( a \right )\), начиная с номера \(n_{0}=max \left \{ n_{1}; n_{2} \right \}\) . Далее повторяем рассуждения, опирающиеся на геометрический смысл определения предела. \)

Ответ: NaN

Известно, что последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \}\) являются ограниченными. Какие из последовательностей \(\left \{ z_{n} \right \}\) обязательно являются ограниченными, какие могут быть ограниченными, а какие всегда являются ограниченными (если последовательность \(\left \{ z_{n} \right \}\) существует):\( z_{n}=2x_{n}+y_{n}\)

Решение №7471: Обязательно ограничена.

Ответ: NaN

Докажите, что если \(\lim_{n \to \propto} a_{n}=a, то \lim_{n \to \propto} \sin a_{n}=\sin a и \lim_{n \to \propto} \cos a_{n}=\cos a. \)

Решение №7481: Так как \(\lim_{n \to \propto} a_{n}=a\), то последовательность \(\alpha _{n}=a_{n}-a\) бесконечно малая при \(n\rightarrow \propto\). Значит, \(\forall \varepsilon > 0 \exists k\in N: \forall n\geqslant k \left | a-a_{n} \right |< \varepsilon . \forall \varepsilon > 0\exists k_{1}\in N: \forall n\geqslant k_{1} \left | \sin a_{n}-\sin a \right |=\left | 2\sin \frac{a_{n}-a}{2} \cos \frac{a_{n}+a}{2}\right |< \varepsilon \). Поскольку выполнены неравенства \(\left | \sin \alpha _{n} \right |\leqslant \left | \alpha _{n} \right |и \left | \cos \alpha _{n} \right |\leqslant 1, то получаем \left | 2\sin \frac{a_{n}-a}{2}\cos \frac{a_{n}+a}{2} \right |\leqslant 2\left | \frac{a_{n}-a}{2} \right |< \varepsilon \). Поэтому, как только \(\left | a_{n}-a \right |< \varepsilon\) , так сразу \(\left | \sin a_{n}-\sin a \right |< \varepsilon \). Доказательство того, что \(\lim_{n \to \propto}\cos a_{n}=\cos a\), аналогично приведенному.

Ответ: NaN

Найдите: \(\lim_{n \to \propto}\left ( \frac{n+10}{2n-1} \right )^{n}\)

Решение №7489: \( \forall n> 17 \frac{n+10}{2n-1}< \frac{5}{6}. 0< \left ( \frac{n+10}{2n-1} \right )^{n}< \left ( \frac{5}{6} \right )^{n} \)

Ответ: 0

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами.\( x_{n}=\frac{4^{n}+n^{2}*2^{n}-1}{n^{4}+\left ( n! \right )^{2}}\)

Решение №7493: Заметим, что \(\forall n\in N 0< \frac{4^{n}+n^{2}*2^{n}-1}{n^{4}+\left ( n! \right )^{2}}< \frac{4^{k}+n^{2}*2^{n}-1}{n^{4}}=\left ( \frac{2^{n}}{n^{2}} \right )^{2}+\frac{2^{n}}{n^{2}}-\frac{1}{n^{4}}\), а так как \(\lim_{n \to \propto} \left ( \left ( \frac{2^{n}}{n^{2}} \right )^{2}+\frac{2^{n}}{n^{2}}-\frac{1}{n^{4}} \right )=0\), то и \(\lim_{n \to \propto}\frac{4^{n}+n^{2}*2^{n}-1}{n^{4}+\left ( n! \right )^{2}}=0 \)

Ответ: 0

Выясните, сходится ли последовательность\( \left \{ x_{n} \right \} \)и найдите предел сходящейся последовательности \(x_{1}=\frac{1}{2}, x_{n+1}= \left ( 1-x_{n} \right )^{2}\)

Решение №7500: \( \forall n\in N x_{n}\in \left ( 0; 1 \right )\), но на \(\left ( 0;1 \right ) \) функция \(f\left ( x \right )=\left ( 1-x \right )^{2}\) убывает. Таким образом, обе последовательности монотонные и ограниченные, а значит, имеют предел. Осталось показать, что эти пределы равны. Для этого в равенстве \(x_{n+1}=\left ( 1-\left ( 1-x_{n-1} \right )^{2} \right )^{2}\) перейдем к пределу, обозначив его за A. Получим уравнение \(A=\left ( 1-\left ( A-1 \right )^{2} \right )^{2}\). Заметим, что, кроме 0 и 2, это уравнение имеет корни \(\frac{3\pm \sqrt{5}}{2}\), из которых лишь \(\frac{3-\sqrt{5}}{2}\) может служить пределом обеих последовательностей.

Ответ: NaN

Пусть \(0< x_{1}< 1, \forall n\in N x_{n+1}=x_{n}\left ( 2-x_{n} \right )\).Докажите, что последовательность \(\left \{ x_{n} \right \} сходится и \lim_{n \to \propto} x_{n}=1 \)

Решение №7507: Рассмотрим \(f\left ( x \right )=2x-x^{2}\). Можно показать по индукции, что если \(0< x_{1}< 1\), то \(\forall n x_{n}\in \left ( 0; 1 \right )\). Тогда при \(х ∈ (0; 1) E (f) = (0; 1)\). Более того, функция f возрастает на \(x\in \left ( 0; 1 \right )\). Значит, последовательность \(\left \{ x_{n} \right \}\) возрастает и ограниченна. И следовательно, существует \(\lim_{n \to \propto} x_{n}=1\), который находится однозначно из уравнения \(a=a\left ( 2-a \right ) \)

Ответ: NaN

Пусть\( 0< x_{1}< a, \forall n\in N x_{n+1}=x_{n}\left ( a-x_{n} \right )\). Докажите, что\( \lim_{n \to \propto} x_{n} a-1 1< a\leqslant 2 \)

Решение №7509: Очевидно, что \(\forall n\in N x_{n+1}\geqslant y_{n+1}\). Докажем, что последовательность \(\left \{ x_{n} \right \}\) убывающая, а последовательность \(\left \{ y_{n} \right \}\) возрастающая, начиная с некоторого \(k\forall n\in N x_{n+2}-x_{n+1}=\frac{y_{n+1}-x_{n+1}}{2}\leqslant 0. \forall n\in N y_{n+2}=\sqrt{x_{n+1}y_{n+1}}=\sqrt{\frac{x_{n}y_{n}}{2}*y_{n+1}}\geqslant y_{n+1}, \frac{x_{n}y_{n}}{2}\geqslant \sqrt{x_{n}y_{n}}=y_{n+1}\). Тогда последовательность \(\left \{ x_{n} \right \}\) возрастает и ограничена сверху, например\( y_{1}=b\), а последовательность \(\left \{ y_{n} \right \}\) убывает и ограничена снизу, например\(y_{1}=0\), так что обе имеют пределы. Осталось показать, что эти пределы равны. Перейдём в равенстве \(x_{n+1}=\frac{x_{n}+y_{n}}{2}\) к пределу: \(A=\frac{A+B}{2}\Leftrightarrow A=B\), что и требовалось.

Ответ: NaN

Докажите, что последовательность имеет предел, больший\( \frac{1}{2} \)и меньший 1: \(a_{n}=\frac{1}{n}+\frac{1}{n+1}+...+\frac{1}{2n}\)

Решение №7510: \( a_{n+1}-a_{n}=\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n}< \frac{1}{2n}+\frac{1}{2n}-\frac{1}{n}=0\) Таким образом, последовательность убывает. Поскольку последовательность ограничена снизу (например, числом 0), то имеет предел, причём этот предел меньше \(a_{3}=\frac{19}{20}< 1\)

Ответ: NaN

Пусть \(x_{1}=a, 0< a\leq 2, x_{n+1}=\sqrt{2-\sqrt{4-x_{n}^{2}}}\), Докажите, что при\( a=2 \lim_{n \to \propto} 2^{n}*x_{n}=\pi \)

Решение №7513: Подстановка показывает, что при a=2 члены последовательности \(\left \{ x_{n} \right \} \)суть периметры правильных \(2^{n+1}\) угольников, вписанных в окружности радиуса, предел которых есть длина этой окружности, т.е.\( 2\pi \)

Ответ: NaN

Последовательность \(\left \{ x_{n} \right \}\) задана формулой \(x_{n}=nx_{n-1}+2, x_{0}=c\). Докажите, что если \(с\geqslant 2\), то данная последовательность монотонна.

Решение №7515: При \(с\geqslant -2 \) имеем \(x_{1}\geqslant 0\), а тогда все последующие члены последовательности положительны. В таком случае очевидно, что каждый последующий член последовательности больше предыдущего.

Ответ: NaN

Докажите, что \(\forall n\in N: \left ( 1+\frac{1}{n} \right )^{n}< \left ( 1+\frac{1}{2n} \right )^{2n} \)

Решение №7521: Последовательность \(a_{n}=\left ( 1+\frac{1}{n} \right )^{n}\) возрастающая. В нашем случае \(a_{n}< a_{2n} \)

Ответ: NaN

Докажите, что\( \lim_{n \to \propto} \frac{1}{n}\sqrt[n]{n!}=\frac{1}{e} \)

Решение №7525: Заметим, что \(\left ( 1+\frac{1}{1} \right )^{1}*\left ( 1+\frac{1}{2} \right )^{2}*\left ( 1+\frac{1}{3} \right )^{3}*...*\left ( 1+\frac{1}{n-1} \right )^{n-1}=\frac{n^{n-1}}{\left ( n-1 \right )!}=\frac{n^{n}}{n!}\) Тогда можно записать следующие равенства: \(\frac{1}{n}\sqrt[n]{n!}=\frac{\sqrt[n]{\frac{n!}{n^{n}}}}{\sqrt[n]{1*\left ( 1+\frac{1}{1} \right )^{1}*\left ( 1+\frac{1}{2} \right )^{2}*\left ( 1+\frac{1}{3} \right )^{3}*...*\left ( 1+\frac{1}{n-1} \right )^{n-1}}}\) Тем самым, взяв натуральный логарифм исходной последовательности, можно записать его в виде \(\ln \left ( \frac{1}{n}\sqrt[n]{n!} \right )=-\frac{\ln 1+\ln \left ( 1+\frac{1}{1} \right )^{1}+\ln \left ( 1+\frac{1}{2} \right )^{2}+\ln \left ( 1+\frac{1}{3} \right )^{3}+...+\ln \left ( 1+\frac{1}{n-1} \right )^{n-1}}{n}\). Мы знаем, что \(\lim_{n \to \propto}\ln \left ( 1+\frac{1}{n-1} \right )^{n-1}=1,\)а тогда и \(\lim n_{\to \propto}\frac{\ln 1+\ln \left ( 1+\frac{1}{1} \right )^{1}+\ln \left ( 1+\frac{1}{2} \right )^{2}+\ln \left ( 1+\frac{1}{3} \right )^{3}+...+\ln \left ( 1+\frac{1}{n-1} \right )^{n-1} }{n}=1\), а значит \(\lim_{n \to \propto}\ln \left ( \frac{1}{n}\sqrt[n]{n!} \right )=-1\), откуда \(\lim_{n \to \propto}\left ( \frac{1}{n}\sqrt[n]{n!} \right )=\frac{1}{e} \)

Ответ: NaN

Разложите выражение на множетели \(\left ( 1+\frac{1}{n} \right )^{n} \), используя формулу бинома Ньютона и написав формулу биномиальных коэффициентов.

Решение №7526: упомянутое разложение можно записать так: \(\left ( 1+\frac{1}{n} \right )^{n}=1+1+\frac{1}{2!}*\left ( 1-\frac{1}{n} \right )+\frac{1}{3!}\left ( 1-\frac{1}{n} \right )\left ( 1-\frac{2}{n} \right )+...+\frac{1}{n!}\left ( 1-\frac{1}{n} \right )\left ( 1-\frac{2}{n} \right )*...*\left ( 1-\frac{n-1}{n} \right ) \)

Ответ: NaN

Найдите: \(\lim_{n \to \propto}\left ( \frac{2n+3}{n^{2}} \right )^{n}\)

Решение №7529: При n> 2 выполняется \(\frac{2}{n}=\frac{2n}{n^{2}}< \frac{2n+3}{n^{2}}< \frac{4n}{n^{2}}=\frac{4}{n}\)\). Тогда так как \(\(\forall n> 2\left ( \frac{2}{n} \right )^{n}< \left ( \frac{2n+3}{n^{2}} \right )^{n}< \left ( \frac{4}{n} \right )^{n}\), то по теореме о сжатой последовательности \(\lim_{n \to \propto} \left ( \frac{2n+3}{n^{2}} \right )=0.\)

Ответ: 0

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »