№7515
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Последовательность \(\left \{ x_{n} \right \}\) задана формулой \(x_{n}=nx_{n-1}+2, x_{0}=c\). Докажите, что если \(с\geqslant 2\), то данная последовательность монотонна.
Ответ
NaN
Решение № 7515:
При \(с\geqslant -2 \) имеем \(x_{1}\geqslant 0\), а тогда все последующие члены последовательности положительны. В таком случае очевидно, что каждый последующий член последовательности больше предыдущего.