№7500
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Выясните, сходится ли последовательность\( \left \{ x_{n} \right \} \)и найдите предел сходящейся последовательности \(x_{1}=\frac{1}{2}, x_{n+1}= \left ( 1-x_{n} \right )^{2}\)
Ответ
NaN
Решение № 7500:
\( \forall n\in N x_{n}\in \left ( 0; 1 \right )\), но на \(\left ( 0;1 \right ) \) функция \(f\left ( x \right )=\left ( 1-x \right )^{2}\) убывает. Таким образом, обе последовательности монотонные и ограниченные, а значит, имеют предел. Осталось показать, что эти пределы равны. Для этого в равенстве \(x_{n+1}=\left ( 1-\left ( 1-x_{n-1} \right )^{2} \right )^{2}\) перейдем к пределу, обозначив его за A. Получим уравнение \(A=\left ( 1-\left ( A-1 \right )^{2} \right )^{2}\). Заметим, что, кроме 0 и 2, это уравнение имеет корни \(\frac{3\pm \sqrt{5}}{2}\), из которых лишь \(\frac{3-\sqrt{5}}{2}\) может служить пределом обеих последовательностей.