Задача №7525

№7525

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5

Условие

Докажите, что\( \lim_{n \to \propto} \frac{1}{n}\sqrt[n]{n!}=\frac{1}{e} \)

Ответ

NaN

Решение № 7525:

Заметим, что \(\left ( 1+\frac{1}{1} \right )^{1}*\left ( 1+\frac{1}{2} \right )^{2}*\left ( 1+\frac{1}{3} \right )^{3}*...*\left ( 1+\frac{1}{n-1} \right )^{n-1}=\frac{n^{n-1}}{\left ( n-1 \right )!}=\frac{n^{n}}{n!}\) Тогда можно записать следующие равенства: \(\frac{1}{n}\sqrt[n]{n!}=\frac{\sqrt[n]{\frac{n!}{n^{n}}}}{\sqrt[n]{1*\left ( 1+\frac{1}{1} \right )^{1}*\left ( 1+\frac{1}{2} \right )^{2}*\left ( 1+\frac{1}{3} \right )^{3}*...*\left ( 1+\frac{1}{n-1} \right )^{n-1}}}\) Тем самым, взяв натуральный логарифм исходной последовательности, можно записать его в виде \(\ln \left ( \frac{1}{n}\sqrt[n]{n!} \right )=-\frac{\ln 1+\ln \left ( 1+\frac{1}{1} \right )^{1}+\ln \left ( 1+\frac{1}{2} \right )^{2}+\ln \left ( 1+\frac{1}{3} \right )^{3}+...+\ln \left ( 1+\frac{1}{n-1} \right )^{n-1}}{n}\). Мы знаем, что \(\lim_{n \to \propto}\ln \left ( 1+\frac{1}{n-1} \right )^{n-1}=1,\)а тогда и \(\lim n_{\to \propto}\frac{\ln 1+\ln \left ( 1+\frac{1}{1} \right )^{1}+\ln \left ( 1+\frac{1}{2} \right )^{2}+\ln \left ( 1+\frac{1}{3} \right )^{3}+...+\ln \left ( 1+\frac{1}{n-1} \right )^{n-1} }{n}=1\), а значит \(\lim_{n \to \propto}\ln \left ( \frac{1}{n}\sqrt[n]{n!} \right )=-1\), откуда \(\lim_{n \to \propto}\left ( \frac{1}{n}\sqrt[n]{n!} \right )=\frac{1}{e} \)

Поделиться в социальных сетях

Комментарии (0)