№7443
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите \(\lim_{n \to \propto}\sin ^{2}\left ( \pi \sqrt{n^{2}+n} \right ) \)
Ответ
NaN
Решение № 7443:
Так как \(\forall x\sin ^{2}x=\sin ^{2}\left ( x-\pi k \right ), то \lim_{n \to \propto}\sin ^{2}\left ( \pi \sqrt{n^{2}+n}-\pi n \right )=\lim_{n \to \propto}\sin ^{2}\frac{\pi \left ( n^{2}+n-n^{2} \right )}{\sqrt{n^{2}+n}+n}=\lim_{n \to \propto}\sin ^{2}\frac{\pi n}{n\left ( \sqrt{1+\frac{1}{n}}+1 \right )}=1 \)