Задача №7510

№7510

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге:

Условие

Докажите, что последовательность имеет предел, больший\( \frac{1}{2} \)и меньший 1: \(a_{n}=\frac{1}{n}+\frac{1}{n+1}+...+\frac{1}{2n}\)

Ответ

NaN

Решение № 7510:

\( a_{n+1}-a_{n}=\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n}< \frac{1}{2n}+\frac{1}{2n}-\frac{1}{n}=0\) Таким образом, последовательность убывает. Поскольку последовательность ограничена снизу (например, числом 0), то имеет предел, причём этот предел меньше \(a_{3}=\frac{19}{20}< 1\)

Поделиться в социальных сетях

Комментарии (0)