Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Отрезки \(AB\) и \(CD\) пересекаются в точке \(O\) и делятся этой точкой пополам. Докажите, что \(AC || BD\) и \(AD || BC\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Точки \(A\) и \(D\) лежат на одной из двух параллельных прямых, точки \(B\) и \(C\) — на другой, причем прямые \(AB\) и \(CD\) также параллельны. Докажите, что противоположные углы четырехугольника \(ABCD\) равны между собой.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Через вершину \(B\) треугольника \(ABC\) проведена прямая, параллельная прямой \(AC\). Образовавшиеся при этом три угла с вершиной \(B\) относятся как \(3 : 10 : 5\). Найдите углы треугольника \(ABC\).

Пока решения данной задачи,увы,нет...

Ответ: {30;50;100}

Через середину \(M\) отрезка с концами на двух параллельных прямых проведена прямая, пересекающая эти прямые в точках \(A\) и \(B\). Докажите, что \(M\) также середина \(AB\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

\(AD\) — биссектриса треугольника \(ABC\). Точка \(M\) лежит на стороне \(AB\), причем \(AM = MD\). Докажите, что \(MD || AC\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Точки \(A\) и \(D\) лежат на одной из двух параллельных прямых, точки \(B\) и \(C\)— на другой, причем прямые \(AB\) и \(CD\) также параллельны. Докажите, что \(AB = CD\) и \(AD = BC\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Докажите, что прямая, проходящая через середины боковых сторон равнобедренного треугольника, параллельна основанию.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.

Пока решения данной задачи,увы,нет...

Ответ: 90

Прямая пересекает параллельные прямые \(a\) и \(b\) в точках \(A\) и \(B\) соответственно. Биссектриса одного из образовавшихся углов с вершиной \(B\) пересекает прямую \(a\) в точке \(C\). Найдите \(AC\), если \(AB = 1\).

Пока решения данной задачи,увы,нет...

Ответ: 1

Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?

Пока решения данной задачи,увы,нет...

Ответ: Да

Дана незамкнутая ломаная \(ABCD\), причем \(AB = CD\) и \(∠ABC = ∠BCD\). Докажите, что \(AD || BC\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Равные отрезки \(AB\) и \(CD\) пересекаются в точке \(K\). Известно, что \(AC || BD\). Докажите, что треугольники \(AKC\) и \(BKD\) равнобедренные.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Биссектрисы углов \(В\) и \(С\) треугольника \(АВС\) пересекаются в точке \(О\). На стороне \(ВС\) отмечены точки \(D\) и \(Е\) так, что \(DO\parallel AB\) и \(EO\parallel AC\). Докажите, что периметр треугольника \(OED\) равен отрезку \(ВС\).

Решение №17241: Треугольники \(0BD\) и \(ОСЕ\) равнобедренные.

Ответ: NaN

Биссектрисы углов В и С треугольника \(АВС\) пересекаются в точке О. Прямая, проходящая через точку О параллельно стороне \(ВС\), пересекает стороны \(АВ\) и \(АС\) в точках Р и Q. Докажите, что \(PQ = ВР + CQ\).

Решение №17242: Треугольники \(ОВР\) и \(OCQ\) равнобедренные.

Ответ: NaN

Секущая пересекает параллельные прямые \(а\) и \(b\) в точках \(А\) и \(В\). Биссектрисы образовавшихся углов с вершиной\( В\) пересекают прямую \(а\) в точках \(С\) и \(D\). Докажите, что точка \(А\) — середина отрезка \(CD\).

Решение №17243: Треугольники \(АВС\) и \(ABD\) равнобедренные.

Ответ: NaN

Через точку пересечения биссектрисы угла \(В\) треугольника \(АВС\) и биссектрисы внешнего угла с вершиной \(С\) проведена прямая, параллельная стороне \(ВС\). Она пересекает прямые \(АВ\) и \(АС\) в точках \(М\) и \(N\). Докажите, что \(МN =\left | BM-CN \right |\).

Решение №17244: Пусть точка \(О\) — точка пересечения указанных биссектрис. Тогда треугольники \(ОМВ\) и \(ONC\) равнобедренные.

Ответ: NaN

Биссектриса внешнего угла треугольника \(АВС\) с вершиной \(А\) параллельна стороне \(ВС\). Докажите, что этот треугольник равнобедренный.

Решение №17245: Прямая, проходящая через вершину \(А\) параллельно стороне \(ВС\), разделяет внешний угол на углы, равные углам \(В\) и \(С\).

Ответ: NaN

В равнобедренном треугольнике \(АВС\) с основанием \(АС\) проведены биссектрисы и \(СЕ\). Докажите, что \(АЕ = ED = DC\).

Решение №17246: Треугольники \(АСЕ\) и \(СAD\) равны по стороне и прилежащим к ней углам. Поэтому равны их высоты, проведённые к стороне \(АС\). Следовательно, \(ED\parallel АС\).

Ответ: NaN

В треугольниках \(АВС\) и \(А_{1}В_{1}С_{1}\) проведены биссектрисы \(CD\) и \(С_{1} D_{1}\) . Известно, что \(АВ = А_{1}В_{1}\), CD = С_{1} D_{1} и \(\angle ADC = \angle A_{1}D_{1}C_{1}\). Докажите, что треугольники \(АВС\) и \(А_{1}В_{1}С_{1}\) равны.

Решение №17247: Совместите стороны \(АВ\) и \(А_{1}В_{1}\) данных треугольников так, чтобы точки \(С\) и \(С_{1}\) лежали по одну сторону от прямой \(АВ\). Если прямые \(CD\) и \(С_{1}D_{1}\) совпадают, то точки \(С\) и \(С_{1}\) тоже совпадают. Если же эти прямые не совпадают, то они параллельны. В таком случае угол \(\alpha\) (рис. ниже) является внешним углом треугольника с углом \(\beta\) , а угол \(\beta\) является внешним треугольником углом \(\alpha\). Поэтому \(\alpha > \beta\) и \(\beta > \alpha\) , чего не может быть.

Ответ: NaN

При пересечении прямых \(а\) и \(b\) секущей образовалось восемь углов, четыре из которых равны \(70^{\circ}\) , а четыре других равны \(110^{\circ}\) . Обязательно ли прямые \(а\) и \(b\) параллельны?

Решение №17249: Прямые \(a\) и \(b\) могут содержать стороны равнобедренного треугольника, а секущая его основание.

Ответ: Нет.

При пересечении прямых \(а\) и \(b\) секущей образовалось восемь равных углов. Обязательно ли прямые \(а\) и \(b\) параллельны?

Решение №17250: Прямые \(а\) и \(b\) перпендикулярны секущей

Ответ: Да.

Даны две прямые \(а\) и \(b\). Докажите, что если любая прямая, пересекающая прямую \(а\), пересекает и прямую \(b\), то \(а \parallel b\).

Решение №17251: Пусть любая прямая, пересекающая прямую \(a\), пересекает и прямую \(b\). Предположим, что прямые \(a\) и \(b\) пересекаются в некоторой точке \(A\). Проведем через точку прямой \(a\), отличную от точки \(A\) , прямую, параллельную прямой \(b\). Эта прямая пересекает прямую \(a\) и не пересекает прямую \(b\).

Ответ: NaN

На сторонах \(АВ\) и \(АС\) остроугольного треугольника \(АВС\) как на диаметрах построены окружности. Прямая, проходящая через вершину \(А\) параллельно стороне \(ВС\), пересекает эти окружности в точках \(М\) и \(N\). Докажите, что \(МN = ВС\).

Решение №17252: Проведем высоту \(AH\) (см. рис. ниже). Пусть для определенности точка \(M\) лежит на окружности с диаметром \(AB\). Тогда угол \(AMB\) прямой и прямоугольные треугольники \(ABM\) и \(BAN\) равны по гипотенузе и острому углу.

Ответ: NaN

На стороне \(ВС\) равностороннего треугольника \(АВС\) отмечена точка \(М\), а на продолжении стороны \(АС\) за точку \(С\) отмечена точка \(N\) так, что \(АМ = МN\) . Докажите, что \(BМ = CN\).

Решение №17253: Пусть прямая, проходящая через точку \(М\) параллельно прямой \(АС\), пересекает прямую \(АВ\) в точке \(Р\) (рис. 149). Тогда \(\angle CNM = \angle MAN = \angle PМА\). В треугольниках \(MNC\) и \(АМР\), помимо углов \(N\) и \(М\), равны также углы \(С\) и \(Р\), поэтому равны и углы \(М\) и \(А\). Следовательно, эти треугольники равны по стороне (\(МN = АM\)) и прилежащим к ней углам, поэтому \(CN = РМ = ВМ\).

Ответ: NaN

В остроугольном треугольнике \(АВС\) проведена высота \(СН\). Докажите, что если \(АН = ВС\), то биссектриса угла \(В\), высота \(AD\) и прямая, проходящая через точку Н параллельно стороне \(ВС\), пересекаются в одной точке.

Решение №17254: Рассмотрим точку \(К\), в которой пересекаются высота \(АD\) и прямая, проходящая через точку \(Н\) параллельно стороне \(ВС\), и покажем, что луч \(ВК\) - биссектриса угла \(В\) (рис. 150). Действительно, прямоугольные треугольники \(АНК\) и \(СВН\) равны по гипотенузе и острому углу, поэтому \(НК = НВ\), а значит, \(\angle HBK = \angle HКВ = \angle КВС\).

Ответ: NaN

На стороне \(ВС\) треугольника \(АВС\) отмечена точка \(Е\), а на биссектрисе \(BD\) — точка \(F\) так, что \(EF\parallel AC\) и \(AF = АD\) (см. рис. ниже). Докажите, что \(АВ = ВЕ\).

Решение №17721: Треугольники \(АВF\) и \(ЕВF\) равны по стороне \(ВF\) и прилежащим к ней углам, поскольку \(\angle AFB = 180^{\circ} - \angle ADF = \angle BFE\).

Ответ: NaN

Через точку \(С\), не принадлежащую ни одной из прямых \(a\) и \(b\), про­ведена прямая \(c\). Определите взаимное расположение прямых \(b\) и \(c\), если: а) \(а \parallel b\), \(с \parallel a\); б) \(а \perp b\), \(с \perp a\). Изменятся ли ответы, если точка \(С\) лежит на прямой \(b\)?

Пока решения данной задачи,увы,нет...

Ответ: а) \(b \parallel c\); б) \(b \parallel c\).

На рис. 124 укажите угол, который вместе с углом 4 составляет: а) пару внутренних накрест лежащих углов; б) пару внутренних односторонних углов; в) пару соответственных углов.

Пока решения данной задачи,увы,нет...

Ответ: NaN

По рис. 124 определите, будут ли прямые \(a\) и \(b\) параллельными, если: а) \(\angle З = \angle 6\); б) \(\angle 5 = \angle 8\); в) \(\angle 1 = \angle 7\); г) \(\angle 2 = \angle 6\); д) \(\angle З + \angle 5 =180^\circ\); е) \(\angle 2 + \angle 4 =180^\circ\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

По рис. 124 определите, при каких значениях \(n\) будет верным утверждение: а) если \(\angle 6 = \angle n\), то \(а \parallel b\); б) если \(\angle 6 + \angle n = 180^\circ\), то \(а \parallel b\).

Пока решения данной задачи,увы,нет...

Ответ: NaN