Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Найти производную функции \(f(x)=\frac{1}{2}ln(1+x)-\frac{1}{4}ln(1+x^{2})-\frac{1}{2(x+1)}\)

Пока решения данной задачи,увы,нет...

Ответ: \(\frac{1}{(x+1)^{2}(x^{2}+1)}\)

вычислите: \(log_\frac{1}{2}\sqrt[3]{2}\)

Пока решения данной задачи,увы,нет...

Ответ: -\frac{1}{3}

Найти наименьшее значение функции на отрезке\(y=x^{2}-6x+10-9\sqrt[3]{(x-3)^{4}}+27\sqrt[3]{(x-3)^{2}}\) на отрезке \([-5;4]\)

Пока решения данной задачи,увы,нет...

Ответ: 1

Найти наименьшее значение функции на отрезке\(y=\frac{1}{ln2}(2^{x}+2^{-x})\) на отрезке \([-1;2]\)

Пока решения данной задачи,увы,нет...

Ответ: \underset{[-1;2]}{max} y(x)=\frac{17}{4ln2}; \underset{[-1;2]}{min} y(x)=\frac{2}{ln2}

Найти наибольшее функции на отрезке\(y=\sqrt{x^{2}-x-2}\) на отрезке \([3;5]\)

Пока решения данной задачи,увы,нет...

Ответ: \underset{[3;5]}{max} y(x)=3\sqrt{2}; \underset{[3;5]}{min} y(x)=2

Найти наибольшее функции на отрезке\(y=\frac{2}{1+\sqrt{2}sin\left ( x+\frac{\pi }{4} \right )}\) на отрезке \(\left [0;\frac{\pi }{2} \right ]\)

Пока решения данной задачи,увы,нет...

Ответ: 1

Найти производную и наименьшее значение функции\(y=4^{-x}+(6a-7)(0,5)^{x}-2(7a-4a^{2})\) на отрезке \([-log_{2}3; log_{2}3]\)

Пока решения данной задачи,увы,нет...

Ответ: \(y^{'}=2ln\frac{1}{2}\cdot 4^{-x}+(6a-7)(0,5)^{-x}ln\frac{1}{2}\)

Представить число 18 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного куба одного из них и удевятеренного квадрата другого была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: {6;12}

Число 18 представить в виде суммы двух положительных слагаемых так, чтобы сумма их квадратов была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: {9;9}

Число 36 представить в виде произведения двух сомножителей так, чтобы сумма их квадратов была наименьшей

Пока решения данной задачи,увы,нет...

Ответ: 6*6

Турист идет из пункта \(A\), находящегося на шоссе, в пункт \(Б\), расположенный в 8 км от шоссе. Расстояние от \(A\) до \(Б\) по прямой равно 17 км. На каком расстоянии от \(A\) туристу следует свернуть с шоссе, чтобы в кратчайшее время прийти в пункт \(Б\), если скорость туриста по шоссе равна 5 км/ч, а по бездорожью 3 км/ч?

Пока решения данной задачи,увы,нет...

Ответ: В 9 км от \(А\)