Задача №13613

№13613

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,

Задача в следующих классах: 11 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Найти производную и наименьшее значение функции\(y=4^{-x}+(6a-7)(0,5)^{x}-2(7a-4a^{2})\) на отрезке \([-log_{2}3; log_{2}3]\)

Ответ

\(y^{'}=2ln\frac{1}{2}\cdot 4^{-x}+(6a-7)(0,5)^{-x}ln\frac{1}{2}\)

Решение № 13611:

NaN

Поделиться в социальных сетях

Комментарии (0)