№13567
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найти производную функции \(f(x)=log_{x}2+log_{2}x\)
Ответ
\(\frac{1}{xln2}\left ( 1-\frac{1}{log_{2}^{2}x} \right )\)
Решение № 13565:
NaN