Задача №13582

№13582

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,

Задача в следующих классах: 11 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Найти наименьшее значение функции на отрезке\(y=\frac{1}{ln2}(2^{x}+2^{-x})\) на отрезке \([-1;2]\)

Ответ

\underset{[-1;2]}{max} y(x)=\frac{17}{4ln2}; \underset{[-1;2]}{min} y(x)=\frac{2}{ln2}

Решение № 13580:

NaN

Поделиться в социальных сетях

Комментарии (0)