Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22309: Для того, чтобы найти работу, которая совершает сила, необходимо решить тригонометрическое уравнение: \(A=F\cdot S\cdot \cos\alpha=80\cdot 100\cdot \cos 30^{\circ}=6928,2\) Дж.
Ответ: 6928.2
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22313: Решение задачи сводится к нахождению неизвестного значения силы \(F\) в уравнении: \(m\cdot g\cdot \frac{l}{2}\cdot \cos \alpha -F\cdot l=0;m\cdot g\cdot \frac{l}{2}\cdot \cos \alpha= F\cdot l;F=\frac{m\cdot g\cdot \frac{l}{2}\cdot \cos \alpha}{l}=\frac{m\cdot g}{2}\cdot \cos \alpha =\frac{50\cdot 10}{2}\cdot \cos 30^{\circ}=216\) Н \(=0,216\) кН.
Ответ: 0.216
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22368: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его:\(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha \cdot S=21\cdot 1,2\cdot 0,4\cdot 0,25\cdot \sin 90^{\circ}=2,52\) Дж \(= 2520\) мДж.
Ответ: 2520
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22369: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его: \(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha \cdot S=2\cdot 15\cdot 0,4\cdot 0,1\cdot \cos 90^{\circ}=1,2\) Дж \(=1200\) мДж.
Ответ: 1200
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22370: Решение задачи сводится к нахождению неизвестного значения силы тока \(I\) в уравнении: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha => I=\frac{F_{A}}{B\cdot l\cdot \sin \alpha }=\frac{0,15}{20\cdot 10^{-3}\cdot 0,5\cdot \sin 90^{\circ}}=15\) А.
Ответ: 15
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22371: Для того, чтобы найти значение силы тока, воспользуемся равенством из условия: \(F_{A}=m\cdot g\) из этого следует, что \(I\cdot B\cdot l\cdot \sin \alpha =m\cdot g\). Выражаем в даном уравнении силу тока \(I\) и решаем его: \(I\cdot B\cdot l\cdot \sin \alpha =m\cdot g=> I=\frac{m\cdot g}{B\cdot l\cdot \sin \alpha }=\frac{2\cdot 10}{15\cdot 0б5\cdot \sin 90^{\circ}}=2,67\) А.
Ответ: 2.67
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22372: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его: \(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha\cdot S=5\cdot 0,15\cdot 0,5\cdot 1,2\cdot \sin 30^{\circ}=0,225\) Дж.
Ответ: 0.225
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22373: Для того, чтобы найти значение силы тока, воспользуемся формулой: \(M=B\cdot I\cdot S\cdot \sin \alpha \). Очевидно, что максимальный магнитный момент будет наблюдаться тогда, когда угол α между нормалью к плоскости контура и вектором магнитной индукции будет равен 90°, то есть плоскость контура будет параллельна линиям магнитной индукции. Тогда имеем уравнение для решения задачи: \(M_{max}=B\cdot I\cdot S\cdot=> I=\frac{0,25\cdot 10^{-3}}{0,5\cdot 5\cdot 10^{-4}}=1\) А.
Ответ: 1
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22374: Для того, чтобы найти индукцию поля \(B\) , необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \). По условию задачи дано, что \(S=200\) см2, \(\beta=60^{\circ}\), \(\Phi=1\) мВб, \(\alpha =90^{\circ}-\beta \). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = > B=\frac{\Phi }{S\cdot \sin \beta }=\frac{10^{-3}}{200\cdot 10^{-4}\cdot \sin 60^{\circ}}=0,0577\) Тл \(=57,7\) мТл.
Ответ: 57.7
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22375: Для того, чтобы определить какой магнитный поток пройдет через площадку, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \( B=4\) Тл, \(S=50\)см2, \(\beta =90^{\circ}\). Подставляем данные значения в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 4\cdot 50\cdot 10^{-4}\cdot \sin 90^{\circ}=0,02\) Вб.
Ответ: 0.02
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22376: Для того, чтобы определить какой магнитный поток пройдет через площадку, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(B=0,5\) Тл, \(S = 25\) см2, \(\beta =30^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 0,5\cdot 25\cdot 10^{-4}\cdot \sin 30^{\circ}=625\cdot 10^{-6}\) Вб \(=625\) мкВб.
Ответ: 625
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22377: Для того, чтобы определить какой магнитный поток пронизывает контур, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(S=25\) см2, \(B=0,04\) Тл, \( \beta =30^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 0,04\cdot 25\cdot 10^{-4}\cdot \sin 30^{\circ}=5\cdot 10^{-5}\) Вб \(=50\) мкВб.
Ответ: 50
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22378: Для того, чтобы определить какой магнитный поток пронизывает контур, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(S=40\) cм2, \(B=2,5\) мТл, \(\beta =90^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 2,5\cdot 10^{-3}\cdot 40\cdot 10^{-4}\cdot \sin 90^{\circ}=10^{-5}\) Вб \(= 10\) мкВб.
Ответ: 10
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22380: Для того, чтобы рассчитать величину ЭДС индукции в проводнике, необходимо воспользоваться уравнением:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\) , где по условию задачи \(l=0,25\) м, \(B=8\) мТл, \(v=5\) м/с, \(\alpha=30^{\circ}\). Подставляем данные в уравнение и решаем его: \(E_{i}=B\cdot v\cdot l\cdot \sin \alpha=8\cdot 10^{-3}\cdot 5\cdot 0,25\cdot \sin 30^{\circ} = 0,005\) В \(=5\) мВ.
Ответ: 5
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22381: Для того, чтобы рассчитать величину ЭДС индукции в проводнике, необходимо воспользоваться уравнением:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\) , где по условию задачи \(l=2\) м, \(B=0,1\) Тл, \(v=5\) м/с, \(\alpha=90^{\circ}\). Подставляем данные в уравнение и решаем его: \(E_{i}=B\cdot v\cdot l\cdot \sin \alpha=0,1\cdot 5\cdot 2\cdot \sin 90^{\circ}=1\) B.
Ответ: 1
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №22386: Для того, чтоны определить ускорение в момент времения, необходимо взять двойную производную от уравнения гармонических колебаний: \(x=4\cdot \sin (2\cdot \pi \cdot t);{x}'=8\cdot \pi \cdot \cos (2\cdot \pi \cdot t);{x}''=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot t)\). Решение полученного уравнение даст значение ускорения: \(a=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot t)=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot 0,5)=0\) м/с2.
Ответ: 0
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №22387: Решение задачи сводится к нахождение неизвестного значения потенциальной энергии \(E_{p} в уравнении: \(E_{p}=\frac{k\cdot x^{2}}{2}\). По условию задачи \(x=x=A\cdot \cos \varphi \), \(k=1\) кН/м, \(A=2\) см, \(\varphi =\frac{\pi }{3}\). Подставляем данные в исходное уравнение и решаем его: \(E_{p}=\frac{k\cdot x^{2}}{2}=\frac{k\cdot (A\cdot \cos \varphi)^{2}}{2}=\frac{1000\cdot 0,02^{2}\cdot \cos ^{2}\frac{3,14}{3}}{2}=0,05\) Дж.
Ответ: 0.05
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 2
Задача встречается в следующей книге:
Решение №22388: Для того, чтоны определить ускорение в момент времения, необходимо взять двойную производную от уравнения гармонических колебаний:\({x}'=-0,05\cdot\frac{2\cdot \pi }{3} \cdot \sin (\frac{2\cdot \pi \cdot t}{3});{x}''=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})\). Решение полученного уравнение даст значение ускорения: \(a=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos \cdot (\frac{2\cdot \pi \cdot 3}{3})=-0,22\)
Ответ: -0.22
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22394: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\beta \) в уравнении: \( n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \beta=\frac{n_{1}\cdot \sin \alpha }{n_{2}};\beta =\arcsin (\frac{n_{1}\cdot \sin \alpha }{n_{2}})=\arcsin (\frac{1,5\cdot \sin 30^{\circ}}{1})=48,6^{\circ}\).
Ответ: \(48,6^{\circ}\)
Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства
Предмет и тема: Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Решение №22395: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\alpha \) в уравнении: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \alpha =\frac{n_{2}\cdot \sin \beta }{n_{1}};\alpha =\arcsin (\frac{n_{2}\cdot \sin \beta }{n_{1}})=\arcsin (\frac{1,5\cdot \sin 35^{\circ}}{1})=59,4^{\circ}\)
Ответ: \(59,4^{\circ}\)