№22382
Экзамены с этой задачей: Тригонометрические уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Известно, что если в однородное магнитное поле внести рамку (или плоский контур, что то же самое), по которой течет ток, то в общем случае на стороны рамки будут действовать силы Ампера. Эти силы создадут вращающий момент сил \(M\), который можно найти по следующей формуле: \(M=B\cdot I\cdot S\cdot \sin \alpha \), где \(B\) - индукция магнитного поля, \(I\) - сила текущего в рамке тока, \(S\) - площадь рамки, \(\alpha \) - угол между нормалью к плоскости контура и вектором магнитной индукции. Определите силу тока, протекающего по плоскому контуру площадью \(5\) см2, находящемуся в однородном магнитном поле с индукцией \(0,5\) Тл, если максимальный механический момент, действующий со стороны поля, равен \(0,25\) мН*м.
Ответ
1
Решение № 22373:
Для того, чтобы найти значение силы тока, воспользуемся формулой: \(M=B\cdot I\cdot S\cdot \sin \alpha \). Очевидно, что максимальный магнитный момент будет наблюдаться тогда, когда угол α между нормалью к плоскости контура и вектором магнитной индукции будет равен 90°, то есть плоскость контура будет параллельна линиям магнитной индукции. Тогда имеем уравнение для решения задачи: \(M_{max}=B\cdot I\cdot S\cdot=> I=\frac{0,25\cdot 10^{-3}}{0,5\cdot 5\cdot 10^{-4}}=1\) А.