№22390
Экзамены с этой задачей: Тригонометрические уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
ЭДС индукции в проводнике \(E_{i}\), движущемся поступательно в магнитном поле, определяется по формуле:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\), где \(B\) - индукция магнитного поля, \(v\) - скорость проводника, \(l\) - длина проводника, \(\alpha\) - угол между вектором скорости проводника и вектором магнитной индукции. Рассчитайте значение ЭДС в проводнике длиной \(2\) м, который движется в однородном магнитном поле индукцией \(0,1\) Тл со скоростью \(5\) м/с, перпендикулярной проводнику и линиям магнитной индукции.
Ответ
1
Решение № 22381:
Для того, чтобы рассчитать величину ЭДС индукции в проводнике, необходимо воспользоваться уравнением:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\) , где по условию задачи \(l=2\) м, \(B=0,1\) Тл, \(v=5\) м/с, \(\alpha=90^{\circ}\). Подставляем данные в уравнение и решаем его: \(E_{i}=B\cdot v\cdot l\cdot \sin \alpha=0,1\cdot 5\cdot 2\cdot \sin 90^{\circ}=1\) B.