№22377
Экзамены с этой задачей: Тригонометрические уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
На проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Под действием этой силы проводник совершает работу, равную \(A=F_{A}\cdot S\), где \(S\) - расстояние. Определите значение данной работы, если проводник с током \(21\) А и длиной \(0,4\) м перемещается в однородном магнитном поле с индукцией \(1,2\) Тл перпендикулярно к линиям индукции на расстояние \(0, 25\) м.
Ответ
2520
Решение № 22368:
Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его:\(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha \cdot S=21\cdot 1,2\cdot 0,4\cdot 0,25\cdot \sin 90^{\circ}=2,52\) Дж \(= 2520\) мДж.