Задача №22387

№22387

Экзамены с этой задачей: Тригонометрические уравнения и неравенства

Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Рассчитайте магнитный поток через плоскую поверхность площадью \(40\) см2, расположенную перпендикулярно силовым линиям однородного магнитного поля, индукция которого равна \(2,5\) мТЛ. Угол \(\alpha =90^{\circ}-\beta \).

Ответ

10

Решение № 22378:

Для того, чтобы определить какой магнитный поток пронизывает контур, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(S=40\) cм2, \(B=2,5\) мТл, \(\beta =90^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 2,5\cdot 10^{-3}\cdot 40\cdot 10^{-4}\cdot \sin 90^{\circ}=10^{-5}\) Вб \(= 10\) мкВб.

Поделиться в социальных сетях

Комментарии (0)