Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Упростить выражения: \( \frac{\log _{a}b+\log _{a}\left (b^{1/2\log _{b}a^{2}} \right )}{\log _{a}b-\log _{ab}b}*\frac{\log _{ab}b*\log _{a}b}{b^{2\log _{b}\log _{a}b}-1} \)

Решение №15782: \( \frac{\log _{a}b+\log _{a}\left (b^{1/2\log _{b}a^{2}} \right )}{\log _{a}b-\log _{ab}b}*\frac{\log _{ab}b*\log _{a}b}{b^{2\log _{b}\log _{a}b}-1}=\frac{\log _{a}b+\log _{a}a}{\log _{a}b-\frac{\log _{a}b}{1+\log _{a}b}}*\frac{\frac{\log _{a}b}{1+\log _{a}b}*\log _{a}b}{\log _{a}^{2}b-1}=\frac{\left ( 1+\log _{a}b \right )^{2}}{\log _{a}^{2}b}*\frac{\log _{a}^{2}b}{\left ( 1+\log _{a}b \right \)left ( \log _{a}b-1 \right \)left ( \log _{a}b+1 \right )}=\frac{1}{\log _{a}b-1} \)

Ответ: \( \frac{1}{\log _{a}b-1} )\

Решить уравнения: \( \log _{5}x+\log _{25}x=\log _{1/5}\sqrt{3} \)

Решение №15783: ОДЗ: \( x> 0 \) Перейдем к основанию 5. Имеем \( \log _{5}x+\frac{1}{2}\log _{5}x=-\frac{1}{2}\log _{5}3 \Leftrightarrow 2\log _{5}x+\log _{5}x=\log _{5}\frac{1}{3} \Leftrightarrow \log _{5}x^{3}=\log _{5}\frac{1}{3} \) Отсюда имеем \( x^{3}=\frac{1}{3}, x=\frac{1}{\sqrt[3]{3}} \)

Ответ: \( \frac{1}{\sqrt[3]{3}} )\

Решить уравнения: \( \log _{x}2-\log _{4}x+\frac{7}{6}=0 \)

Решение №15784: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 2. Имеем \( \frac{1}{\log _{2}x}-\frac{1}{2}\log _{2}x+\frac{7}{6}=0 \Leftrightarrow 3\log _{2}^{2}x-7\log _{2}x-6=0 \) Решая это уравнение как квадратное относительно \( \log _{2}x \), найдем \( \left ( \log _{2}x \right )_{1}=-\frac{2}{3} \), или \( \left ( \log _{2}x \right )_{2}=3 \), откуда \( x_{1}=\frac{1}{\sqrt[3]{4}}, x_{2}=8 \)

Ответ: \( \frac{1}{\sqrt[3]{4}}; 8 )\

Решить уравнения: \( x^{1-\frac{1}{3}\lg x^{2}}=\frac{1}{\sqrt[3]{100}}=0 \)

Решение №15785: ОДЗ: \( 0< x\neq 1 \) Записывая уравнение в виде \( \lg x^{1-\frac{2}{3}\lg x}=\lg \frac{1}{\sqrt[3]{100}} \) и логарифмируя обе части по основанию 10, получаем \( \left ( 1-\frac{2}{3}\lg x \right \)lg x =-\frac{1}{3}\lg 100, 2\lg ^{2}x-\lg x -2=0 \) Решая это уравнение как квадратное относительно \( \lg х \), находим \( \left ( \lg x \right )_{1}=-\frac{1}{2} \) или \( \left ( \lg x \right )_{2}=2 \), откуда \( x_{1}=10^{-\frac{1}{2}}=\frac{1}{\sqrt{10}}, x_{2}=10^{2}=100 \)

Ответ: \( \frac{1}{\sqrt{10}}; 100 )\

Решить уравнения: \( x^{\lg ^{3} x-5\lg x}=0.0001 \)

Решение №15786: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, получаем \( \lg x^{lg^{3} x-5\lg x}=\lg 0.0001\Rightarrow \left ( \lg ^{3}x-5\lg x \right \)lg x=-4, \lg ^{4}x-5\lg ^{2}x+4 =0 \) .Отсюда \( \left ( \lg x \right )_{1}=-1, \left ( \lg x \right )_{2}=1, \left ( \lg x \right )_{3}=-2, \left ( \lg x \right )_{4}=2 \) . Тогда \( x_{1}=\frac{1}{10}, x_{2}=10, x_{3}=\frac{ 1}{ 100}, x_{ 4} = 100 \) .

Ответ: \( \frac{1}{10}, \frac{1}{100}, 10, 100 )\

Решить уравнения: \( x^{2\lg ^{2}x}=10x^{3} \)

Решение №15787: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, получим \( \lg x^{2\lg ^{2}x}=\lg 10x^{3} \Leftrightarrow 2\lg x^{3}=1+3\lg x \Leftrightarrow 2\lg x^{3}-3\lg x-1=0 \Leftrightarrow 2\lg x^{3}+2-3\lg x-3=0 \Leftrightarrow 2\left ( \lg x+1 \right \)left ( \lg ^{2}x-\lg x+1 \right )-3\left ( \lg x+1 \right )=0 \Leftrightarrow \left ( \lg x+1 \right \)left ( 2\lg ^{2}x-2\lg x-1 \right )=0 \), откуда \( \left ( \lg x \right )_{1}=-1, \left ( \lg x \right )_{2}=\frac{1-\sqrt{3}}{2}, \left ( \lg x \right )_{3}=\frac{1+\sqrt{3}}{2} \) Получили \( x_{1}=\frac{1}{10}, x_{2}=10^{\frac{1-\sqrt{3}}{2}}, x_{3}=10^{\frac{1+\sqrt{3}}{2}} \)

Ответ: \( \frac{1}{10}, 10^{\frac{1-\sqrt{3}}{2}}, 10^{\frac{1+\sqrt{3}}{2}} )\

Решить уравнения: \( \log _{4x+1}7+\log _{9x}7=0 \)

Решение №15788: ОДЗ: \( \log _{4x+1}7+\log _{9x}7=0 \left\{\begin{matrix} 0< 4x+1\neq 1 & & \\ 0< 9x\neq 1 & & \end{matrix}\right. \Leftrightarrow 0< x\neq \frac{1}{9} \) Перейдем к основанию 7. Имеем \( \frac{1}{\log _{7}\left ( 4x+1 \right )}+\frac{1}{\log _{7}9x}=0\Rightarrow \log _{7}9x=-\log _{7}\left ( 4x+1 \right \)Leftrightarrow 9x=\frac{1}{4x+1}\Leftrightarrow 36x^{2}+9x-1=0 \), откуда \( x_{1}=\frac{1}{12}, x_{2}=-\frac{1}{3}; x_{2}=-\frac{1}{3} \) не подходит по ОДЗ.

Ответ: \( \frac{1}{12} )\

Решить уравнения: \( \log _{0.5}^{2}4x+\log _{2}\frac{x^{2}}{8} = 8 \)

Решение №15789: ОДЗ: \( x> 0 \) Имеем \( \log _{2}^{2}4x+\log _{2}\frac{x^{2}}{8}-8=0, \left ( \log _{2}4+\log _{2}x \right )^{2}+\log _{2}x^{2}-\log _{2}8-8=0, \log _{2}^{2}x+6\log _{2}x-7= 0 \) Решая это уравнение как квадратное относительно \( \log _{ 2} x \), найдем \( \left (\log _{ 2} x \right )_{1}= -7 \), откуда \( x_{1}=2^{-7}=\frac{1}{128} \), или \( \left ( \log _{2}x \right )_{2}=1 \), откуда \( x_{2}=2 \)

Ответ: \( \frac{1}{128}; 2 )\

Решить уравнения: \( 5^{1+\log _{4}x}+5^{\log _{0.25}x-1}=\frac{26}{5} \)

Решение №15790: ОДЗ: \( x> 0 \) Перейдем к основанию 4. Имеем \( 5*5^{\log _{4}x}+\frac{1}{5*5^{\log _{4}x}}-\frac{26}{5}=0\Leftrightarrow 25*\left ( 5^{\log _{4}x} \right )^{2}-26*5^{\log _{4}x}+1=0 \Rightarrow \left ( 5^{\log _{4}x} \right )_{1}=5^{-2}, \left ( 5^{\log _{4}x} \right )_{2}=5^{\circ} \), откуда \( \left ( \log _{4}x \right )_{1}=-2 \left ( \log _{4}x \right )_{2}=0 \) Следовательно, \( x_{1}=\frac{1}{16}, x_{2}=1 \)

Ответ: \( \frac{1}{16}; 1 )\

Решить уравнения: \( \left ( 1+\frac{1}{2x} \right \)lg 3+\lg 2=\lg \left ( 27-3^{\frac{1}{x}} \right ) \)

Решение №15791: ОДЗ: \( \left\{\begin{matrix} x\neq > 0 & & \\ 27-3^{1/3}> 0 & & \end{matrix}\right. \lg 3^{1+\frac{1}{2x}}+\lg 2=\lg \left ( 27-3^{\frac{1}{x}} \right ) * \lg \left ( 2*3^{1+\frac{1}{2x}} \right )=\lg \left ( 27-3^{\frac{1}{x}} \right ), 2*3^{1+\frac{1}{2x}}=27-3^{\frac{1}{x}} , 3^{\frac{1}{x}}+6*3^{ \frac{1}{ 2x}} -27 =0 \) Это уравнение, квадратное относительно \( 3^{\frac{1}{2x}} \) ; найдем \( 3^{\frac{1}{2x}}=-9 \), которое не подходит, и \( 3^{ \frac{1}{2x}}= 3 \), откуда \( x=\frac{1}{2} \)

Ответ: \( \frac{1}{2} )\

Решить уравнения: \( \lg \left ( x+1.5 \right )=-\lg x \)

Решение №15792: ОДЗ: \( \left\{\begin{matrix} x+1.5> 0 & & \\ x> 0 & & \end{matrix}\right. \lg \left ( x+1.5 \right )+\lg x=0\Rightarrow \lg \left ( x+1,5 \right )x=0\Rightarrow x^{2}+1.5x-1=0 \), откуда \( x_{1}=\frac{1}{2}, x_{2}=-2; x_{2} =-2 \) не подходит по ОДЗ.

Ответ: \( \frac{1}{2} )\

Решить уравнения: \( 3*4^{x}+\frac{1}{3}*9^{x+2}=6*4^{x+1}-\frac{1}{2}*9^{x+1} \)

Решение №15793: Из условия имеем \( 3*4^{x}+\frac{1}{3}*81*9^{x}=6*4*4^{x}-\frac{1}{2}*9*9^{x}\Rightarrow 3*9^{x}=2*4^{x}\Rightarrow \left ( \frac{9}{4} \right )^{x}=\frac{2}{3}, \left ( \frac{3}{2} \right )^{2x}=\left ( \frac{3}{2} \right )^{-1} \), откуда \( x=-\frac{1}{2} \)

Ответ: \( -\frac{1}{2} )\

Решить уравнения: \( 4\log _{4}^{2}\left ( -x \right )+2\log _{4}\left ( x^{2} \right )=-1 \)

Решение №15794: ОДЗ: \( \left\{\begin{matrix} -x> 0, & & \\ x^{2}> 0 & & \end{matrix}\right. \Leftrightarrow x< 0 \) Так как по ОДЗ \( x< 0 \), то имеем \( 4\log _{4}^{2}\left ( -x \right )+4\log _{4}\left ( -x \right )+1=0 \Leftrightarrow \left ( 2\log _{4}\left ( -x \right )+1 \right )^{2}=0 \Leftrightarrow 2\log _{4}\left ( -x \right )=-1, \log _{4}\left ( -x \right )=-\frac{1}{2} \) Отсюда \( -x=4^{-1/2}=\frac{1}{2}, x=-\frac{1}{2}\)

Ответ: \( -\frac{1}{2} )\

Решить системы уравнений: \( \left\{\begin{matrix} 4^{x+y}=2^{y-x} & & \\ 4^{\log _{\sqrt{2}x}}=y^{4}-5 & & \end{matrix}\right. \)

Решение №15795: ОДЗ: \( x> 0 \) Из условия \( \left\{\begin{matrix} 2^{2x+2y}=2^{y-x} & & \\ 2^{\log _{2}x^{4}}=y^{4}-5 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} 2x+2y=y-x & & \\ x^{4}=y^{4}-5 & & \end{matrix}\right. \Rightarrow y=-3x \) Из второго уравнения \( x^{4}=\left ( -3x \right )^{4}-5, x^{4}=\frac{1}{16} \), откуда, учитывая ОДЗ, получаем \( x=\frac{1}{2}, y=-\frac{3}{2} \)

Ответ: \( \frac{1}{2}; -\frac{3}{2} )\

Решить уравнения: \( \sqrt{\log _{x}\sqrt{5x}}=-\log _{x}5 \)

Решение №15796: ОДЗ: \( \left\{\begin{matrix} \log _{x}\sqrt{5x}\geq 0, & & & \\ -\log _{x}5\geq 0, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \) или \( 0< x\leq \frac{1}{5} \) Возведя обе части уравнения в квадрат, имеем \( \log _{x}\sqrt{5x}=\log _{x}^{2}5\Leftrightarrow 2\log _{x}^{2}5-\log _{x}5-1=0\Rightarrow \left ( \log _{x}5 \right )_{1}=-\frac{1}{2}, x_{1}=\frac{1}{25} \) или \( \left ( \log _{x}5 \right )=1, x_{2}=5 ; x_{2}=5 \) не подходит по ОДЗ.

Ответ: \( \frac{1}{25} )\

Решить уравнения: \( \sqrt{\log _{5}^{2}x+\log _{x}^{2}5+2}=2.5 \)

Решение №15797: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 5. Из условия получаем \( \sqrt{\log _{5}^{2}x+\frac{1}{\log _{x}^{2}5}+2}=2.5 \Leftrightarrow \sqrt{\frac{\log _{5}^{4}x+2\log _{5}^{2}x+1}{\log _{5}^{2}x}}=2.5 \Leftrightarrow \sqrt{\left ( \frac{\log _{5}^{2}x+1}{\log _{5}x} \right )^{2}}=2.5 \Leftrightarrow \frac{\log _{5}^{2}x+1}{\left | \log _{5}x \right |}=2.5 \) Получаем 2 случая: \( \left\{\begin{matrix} \log _{5}x< 0, & & \\ \log _{5}^{2}x+2.5\log _{5}x+1=0 & & \end{matrix}\right. \Rightarrow \left ( \log _{5}x \right )_{1}=\frac{1}{2}< 0, \left ( \log _{5}x \right )_{2}=-2< 0 \), откуда \( x_{1}=\frac{1}{\sqrt{5}} , x_{2}=\frac{1}{25} . \left\{\begin{matrix} \log _{5}x> 0, & & \\ \log _{5}^{2}x-2.5\log _{5}x+1=0 & & \end{matrix}\right. \Rightarrow \left ( \log _{5}x \right )_{3}=\frac{1}{2}> 0 , \left ( \log _{5}x \right )_{4}=2> 0 \), откуда \( x_{3}=\sqrt{5} , x_{4}=25 \)

Ответ: \( \frac{1}{25} ;\frac{1}{\sqrt{5}} ; \sqrt{5} ; 25 )\

Решить уравнения: \( 2\log _{x}27-3\log _{27}x=1 \)

Решение №15798: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 27. Имеем \( \frac{2}{\log _{x}27}-3\log _{27}x-1=0\Rightarrow 3\log _{27}^{2}x+\log _{27}x-2=0 \) Решая это уравнение как квадратное относительно \( \log _{27}x \), получаем \( \left (\log _{27}x \right )_{1}=-1 \), откуда \( x_{1}=\frac{1}{27} \), или \( \left (\log _{27}x \right )_{2}=\frac{2}{3} \), откуда \( x_{2}=27^{\frac{2}{3}}=9 \)

Ответ: \( \frac{1}{27} ; 9 )\

Решить уравнения: \( \log_{\sqrt{3}x}*\sqrt{\log_{\sqrt{3}3}-\log_{\sqrt{3}9}}+4=0 \)

Решение №15799: ОДЗ: \( \begin{bmatrix} x\geq 3, & & \\ 0< x< 1. & & \end{bmatrix} \) Перейдем к основанию 3. Получаем \( 2\log_{3}x*\sqrt{2-\frac{2}{\log_{3}x}}+4=0 \Leftrightarrow \log_{3}x*\sqrt{\frac{2\log_{3}x-2}{\log_{3}x}}=-2 \Rightarrow \left\{\begin{matrix} \log_{3}^{2}x-\log_{3}x-2=0 & & \\ \log_{3}x< 0 & & \end{matrix}\right. \) Решая это уравнение как квадратное относительно \( \log_{3}x \), имеем \( \left ( \log_{3}x \right )_{1}=-1 \), или \( \left ( \log_{3}x \right )_{2}=2; \left ( \log_{3}x \right )_{2}=2 \) - постороннее решение. Отсюда \( x=3^{-1}=\frac{1}{3} \)

Ответ: \( \frac{1}{3} )\

Решить уравнения: \( \log_{5}\left ( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1} \right )=3x-1 0\.

Решение №15800: ОДЗ: \( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1}> 0 \) По определнию логарифма получаем \( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1}=5^{3x-1} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}+\frac{2^{1.5x}}{2^{0.5}}-0.05*5^{3x}=\frac{5^{3x}}{5} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}+\frac{2^{1.5x}}{2^{0.5}}=\frac{5^{3x}}{5}+\frac{5^{3x}}{20} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}=\frac{5^{3x}}{2^{2}*5} \Leftrightarrow 2^{1.5x-0.5}=5^{3x-1} \Rightarrow \left\{\begin{matrix} 1.5x-0.5=0, & & \\ 3x-1=0, & & \end{matrix}\right. \), откуда \( x=\frac{1}{3} \)

Ответ: \( \frac{1}{3} )\

Решить уравнения: \( \left | x-3 \right |^{3x^{2}-10x+3}=1 \)

Решение №15801: Очевидно, что \( x\neq 3 \), следовательно, \( \left | x-3 \right |> 0 \) Логарифмируя обе части уравнения по основанию 10, имеем \( \left ( 3x^{2}-10x+3 \right \)lg \left | x-3 \right |=0 \), откуда \( 3x^{2}-10x+3=0 \), или \( \lg \left | x-3 \right |=0 \) Корнями квадратного уравнения \( 3x^{2}-10x+3=0 \), будут \( x_{1}=\frac{1}{3} \), и \( x_{2}=3 \) Из уравнения \( \lg \left | x-3 \right |=0 \), найдем \( \left | x-3 \right |=1 \Rightarrow x-3=-1 \), или \( x-3=1 \) Тогда \( x_{3}=2, x_{4}=4; x_{2}=3 \) не подходит по ОДЗ логарифма.

Ответ: \( \frac{1}{3}; 2; 4 )\

Решить уравнения: \( 2.5^{\log_{3}x}+0.4^{\log_{3}x}=2.9 \)

Решение №15802: ОДЗ: \( x> 0 \) Перепишем уравнение в виде \( \left ( \frac{5}{2} \right )^{\log_{3}x}+\left ( \frac{2}{5} \right )^{\log_{3}x}-2.9=0 \) Умножив уравнение на \( \left ( \frac{5}{2} \right )^{\log_{3}x} \), получим \( \left ( \frac{5}{2} \right )^{2\log_{3}x}-2.9*\left ( \frac{5}{2} \right )^{\log_{3}x}+1=0 \) Решив это уравнение как квадратное относительно \( \left ( \frac{5}{2} \right )^{\log_{3}x} \), найдем \( \left ( \left ( \frac{5}{2} \right )^{\log_{3}x} \right )_{1}=\left ( \frac{5}{2} \right )^{-1} \), откуда \( \log_{3}x=-1, x_{1}=\frac{1}{3} \), или \left ( \left ( \frac{5}{2} \right )^{\log_{3}x} \right )_{2}=\frac{5}{2} \), откуда \( x_{2}=3\)

Ответ: \( \frac{1}{3}; 3)\

Решить уравнения: \( \log _{x}3+\log _{3}x=\log _{\sqrt{x}}3+\log _{3}\sqrt{x}+0.5 \)

Решение №15803: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 3. Имеем \( \frac{1}{\log _{3}x}+\log _{3}x=\frac{2}{\log _{3}x}+\frac{1}{2}\log _{3}x+\frac{1}{2} \Leftrightarrow \log _{3}^{2}x-\log _{3}x-2=0 \Rightarrow \left ( \log _{3}x \right )_{1}=-1 \), или \( \left ( \log _{3}x \right )_{2}=2 \), откуда \( x_{1}=\frac{1}{3}, x_{2}=9 \)

Ответ: \( \frac{1}{3}; 9 )\

Решить уравнения: \( \left | x-2 \right |^{10x^{2}-3x-1}=1 \)

Решение №15804: Перепишем уравнение в виде \( \left | x-2 \right |^{10x^{2}-3x-1}=\left | x-2 \right |^{\circ} \) Тогда получим два случая: \( \left | x-2 \right |=1 \), откуда \( x-2=-1 \), или \( x-2=1 , x_{1}=1 ,x_{2}=3; \left\{\begin{matrix} 0< x\left | x-2 \right |\neq 1 & & \\ 10x^{2}-3x-=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\neq 2 & & \\ x\neq 1, x\neq 3 & & \\ x_{3}=-\frac{1}{5}, x_{4}=\frac{1}{2} & & \end{matrix}\right. \.

Ответ: \( -\frac{1}{5} ; \frac{1}{2}; 1; 3 )\

Решить уравнения: \( \sqrt{2^{x}*\sqrt[3]{4^{x}*0.125^{\frac{1}{x}}}}=4\sqrt[3]{2} \)

Решение №15805: ОДЗ: \( x\neq 0 \) Перепишем уравнение в виде \( 2^{\frac{x}{2}}*2^{\frac{x}{3}}*2^{-\frac{1}{2x}}=2^{2}*2^{\frac{1}{3}}, 2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{2+\frac{1}{3}} \), откуда \( \frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}, 5x^{2}-14x-3=0 \) Тогда \( x_{1}=-\frac{1}{5}, x_{2}= 3 \)

Ответ: \( -\frac{1}{5}, 3 )\

Решить уравнения: \( \log _{x}\left ( 125x \right )*\log _{25}^{2}x=1 \)

Решение №15806: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 5. Тогда получаем \( \frac{\log _{5}125x}{\log _{5}x}*\frac{\log _{5}^{2}x}{\log _{5}^{2}25}=1 \Leftrightarrow \log _{5}^{2}x+3\log _{5}x-4=0 \) Решая это уравнение как квадратное относительно \( \log _{5}x \), имеем \( \left ( \log _{5}x \right )_{1}=1 \), или \( \left ( \log _{5}x \right )_{2}=-4 \), откуда \( x_{1}=5, x_{2}=\frac{1}{625} \)

Ответ: \( \frac{1}{625}; 5 )\

Решить уравнения: \( \sqrt{3\log _{2}^{2}x-1-9\log _{x}^{2}2}=5 \)

Решение №15807: ОДЗ: \( \left\{\begin{matrix} 3\log _{2}^{4}x-\log _{2}^{2}x-9\geq 0, & & \\ 0< x\neq 1. & & \end{matrix}\right. \) Возведем обе части уравнения в квадрат. Тогда \( \frac{3\log _{2}^{4}x-\log _{2}^{2}x-9}{\log _{2}^{2}x}=25 \Leftrightarrow 3\log _{2}^{4}x-26\log _{2}^{2}x-9=0 \) Решая это уравнение как биквадратное относительно \( \log _{2}x \), найдем \( \left ( \log _{2}x \right )_{1}=-3 \), и \( \left ( \log _{2}x \right )_{2}=3 \), откуда \( x_{1}=\frac{1}{8} , x_{2}=8 \)

Ответ: \( \frac{1}{8}; 8 )\

Решить уравнения: \( \log _{x}9x^{2}*\log _{2}^{3}x=4 \)

Решение №15808: ОДЗ: \( 0< x\neq 1 \) Имеем \( \frac{\log _{3}9x^{2}}{\log _{3}x}*\log _{2}^{3}x=4 , \left ( \log _{3}9+\log _{3}x^{2} \right \)log _{3}x=4 , \log _{3}^{2}x+\log _{3}x-2=0 \) Решая это уравнение как квадратное относительно \( \log _{3}x \), найдем \( \left ( \log _{3} x \right )_{1}= -2 \), откуда \( x_{1}= \frac{ 1}{ 9} , \left (\log _{3}x \right )_{2}=1 \), откуда \( x_{ 2 }= 3 \)

Ответ: \( \frac{1}{9} ; 3 )\

Решить уравнения: \( \log _{3}x*\log _{9}x*\log _{27}x*\log _{81}x=\frac{2}{3} \)

Решение №15809: ОДЗ: \( x> 0 \) Имеем \( \log _{3}x*\frac{1}{2}\log _{3}x*\frac{1}{3}\log _{3}x*\frac{1}{4}\log _{3}x=\frac{2}{3} , \log _{4}^{3}x=16 \), откуда \( \left ( \log _{3}x \right )_{1}=-2 \) или \( \left ( \log _{3}x \right )_{2}=2 \) Отсюда \( x_{1}=\frac{1}{9}. x_{2}=9 \)

Ответ: \( \frac{1}{9}; 9 )\

Нарисована окружность, но её центр не отмечен. Постройте центр этой окружности.

Решение №15810: Отметим на окружности три точки \(А\), \(В\) и \(С\). Центр окружности это точка пересечения серединных перпендикуляров к отрезкам \(АВ\) и \(ВС\).

Ответ: NaN

Через данную точку внутри окружности проведите хорду, которая делится этой точкой пополам.

Решение №15811: Сначала через данную точку \(А\) проведите диаметр окружности, а затем через точку \(А\) проведите прямую, перпендикулярную этому диаметру.

Ответ: NaN