№15807
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \sqrt{2^{x}*\sqrt[3]{4^{x}*0.125^{\frac{1}{x}}}}=4\sqrt[3]{2} \)
Ответ
\( -\frac{1}{5}, 3 )\
Решение № 15805:
ОДЗ: \( x\neq 0 \) Перепишем уравнение в виде \( 2^{\frac{x}{2}}*2^{\frac{x}{3}}*2^{-\frac{1}{2x}}=2^{2}*2^{\frac{1}{3}}, 2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{2+\frac{1}{3}} \), откуда \( \frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}, 5x^{2}-14x-3=0 \) Тогда \( x_{1}=-\frac{1}{5}, x_{2}= 3 \)