Задача №15793

№15793

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \left ( 1+\frac{1}{2x} \right \)lg 3+\lg 2=\lg \left ( 27-3^{\frac{1}{x}} \right ) \)

Ответ

\( \frac{1}{2} )\

Решение № 15791:

ОДЗ: \( \left\{\begin{matrix} x\neq > 0 & & \\ 27-3^{1/3}> 0 & & \end{matrix}\right. \lg 3^{1+\frac{1}{2x}}+\lg 2=\lg \left ( 27-3^{\frac{1}{x}} \right ) * \lg \left ( 2*3^{1+\frac{1}{2x}} \right )=\lg \left ( 27-3^{\frac{1}{x}} \right ), 2*3^{1+\frac{1}{2x}}=27-3^{\frac{1}{x}} , 3^{\frac{1}{x}}+6*3^{ \frac{1}{ 2x}} -27 =0 \) Это уравнение, квадратное относительно \( 3^{\frac{1}{2x}} \) ; найдем \( 3^{\frac{1}{2x}}=-9 \), которое не подходит, и \( 3^{ \frac{1}{2x}}= 3 \), откуда \( x=\frac{1}{2} \)

Поделиться в социальных сетях

Комментарии (0)