№15791
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{0.5}^{2}4x+\log _{2}\frac{x^{2}}{8} = 8 \)
Ответ
\( \frac{1}{128}; 2 )\
Решение № 15789:
ОДЗ: \( x> 0 \) Имеем \( \log _{2}^{2}4x+\log _{2}\frac{x^{2}}{8}-8=0, \left ( \log _{2}4+\log _{2}x \right )^{2}+\log _{2}x^{2}-\log _{2}8-8=0, \log _{2}^{2}x+6\log _{2}x-7= 0 \) Решая это уравнение как квадратное относительно \( \log _{ 2} x \), найдем \( \left (\log _{ 2} x \right )_{1}= -7 \), откуда \( x_{1}=2^{-7}=\frac{1}{128} \), или \( \left ( \log _{2}x \right )_{2}=1 \), откуда \( x_{2}=2 \)