Задача №15790

№15790

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{4x+1}7+\log _{9x}7=0 \)

Ответ

\( \frac{1}{12} )\

Решение № 15788:

ОДЗ: \( \log _{4x+1}7+\log _{9x}7=0 \left\{\begin{matrix} 0< 4x+1\neq 1 & & \\ 0< 9x\neq 1 & & \end{matrix}\right. \Leftrightarrow 0< x\neq \frac{1}{9} \) Перейдем к основанию 7. Имеем \( \frac{1}{\log _{7}\left ( 4x+1 \right )}+\frac{1}{\log _{7}9x}=0\Rightarrow \log _{7}9x=-\log _{7}\left ( 4x+1 \right \)Leftrightarrow 9x=\frac{1}{4x+1}\Leftrightarrow 36x^{2}+9x-1=0 \), откуда \( x_{1}=\frac{1}{12}, x_{2}=-\frac{1}{3}; x_{2}=-\frac{1}{3} \) не подходит по ОДЗ.

Поделиться в социальных сетях

Комментарии (0)