Задача №15805

№15805

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( \log _{x}3+\log _{3}x=\log _{\sqrt{x}}3+\log _{3}\sqrt{x}+0.5 \)

Ответ

\( \frac{1}{3}; 9 )\

Решение № 15803:

ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 3. Имеем \( \frac{1}{\log _{3}x}+\log _{3}x=\frac{2}{\log _{3}x}+\frac{1}{2}\log _{3}x+\frac{1}{2} \Leftrightarrow \log _{3}^{2}x-\log _{3}x-2=0 \Rightarrow \left ( \log _{3}x \right )_{1}=-1 \), или \( \left ( \log _{3}x \right )_{2}=2 \), откуда \( x_{1}=\frac{1}{3}, x_{2}=9 \)

Поделиться в социальных сетях

Комментарии (0)