№15810
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{x}9x^{2}*\log _{2}^{3}x=4 \)
Ответ
\( \frac{1}{9} ; 3 )\
Решение № 15808:
ОДЗ: \( 0< x\neq 1 \) Имеем \( \frac{\log _{3}9x^{2}}{\log _{3}x}*\log _{2}^{3}x=4 , \left ( \log _{3}9+\log _{3}x^{2} \right \)log _{3}x=4 , \log _{3}^{2}x+\log _{3}x-2=0 \) Решая это уравнение как квадратное относительно \( \log _{3}x \), найдем \( \left ( \log _{3} x \right )_{1}= -2 \), откуда \( x_{1}= \frac{ 1}{ 9} , \left (\log _{3}x \right )_{2}=1 \), откуда \( x_{ 2 }= 3 \)