№15802
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log_{5}\left ( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1} \right )=3x-1 0\.
Ответ
\( \frac{1}{3} )\
Решение № 15800:
ОДЗ: \( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1}> 0 \) По определнию логарифма получаем \( 2^{1.5x-2.5}+2^{1.5x-0.5}-0.01*5^{3x+1}=5^{3x-1} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}+\frac{2^{1.5x}}{2^{0.5}}-0.05*5^{3x}=\frac{5^{3x}}{5} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}+\frac{2^{1.5x}}{2^{0.5}}=\frac{5^{3x}}{5}+\frac{5^{3x}}{20} \Leftrightarrow \frac{2^{1.5x}}{2^{2.5}}=\frac{5^{3x}}{2^{2}*5} \Leftrightarrow 2^{1.5x-0.5}=5^{3x-1} \Rightarrow \left\{\begin{matrix} 1.5x-0.5=0, & & \\ 3x-1=0, & & \end{matrix}\right. \), откуда \( x=\frac{1}{3} \)