№15811
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \log _{3}x*\log _{9}x*\log _{27}x*\log _{81}x=\frac{2}{3} \)
Ответ
\( \frac{1}{9}; 9 )\
Решение № 15809:
ОДЗ: \( x> 0 \) Имеем \( \log _{3}x*\frac{1}{2}\log _{3}x*\frac{1}{3}\log _{3}x*\frac{1}{4}\log _{3}x=\frac{2}{3} , \log _{4}^{3}x=16 \), откуда \( \left ( \log _{3}x \right )_{1}=-2 \) или \( \left ( \log _{3}x \right )_{2}=2 \) Отсюда \( x_{1}=\frac{1}{9}. x_{2}=9 \)