№15792
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 5^{1+\log _{4}x}+5^{\log _{0.25}x-1}=\frac{26}{5} \)
Ответ
\( \frac{1}{16}; 1 )\
Решение № 15790:
ОДЗ: \( x> 0 \) Перейдем к основанию 4. Имеем \( 5*5^{\log _{4}x}+\frac{1}{5*5^{\log _{4}x}}-\frac{26}{5}=0\Leftrightarrow 25*\left ( 5^{\log _{4}x} \right )^{2}-26*5^{\log _{4}x}+1=0 \Rightarrow \left ( 5^{\log _{4}x} \right )_{1}=5^{-2}, \left ( 5^{\log _{4}x} \right )_{2}=5^{\circ} \), откуда \( \left ( \log _{4}x \right )_{1}=-2 \left ( \log _{4}x \right )_{2}=0 \) Следовательно, \( x_{1}=\frac{1}{16}, x_{2}=1 \)