№15787
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( x^{1-\frac{1}{3}\lg x^{2}}=\frac{1}{\sqrt[3]{100}}=0 \)
Ответ
\( \frac{1}{\sqrt{10}}; 100 )\
Решение № 15785:
ОДЗ: \( 0< x\neq 1 \) Записывая уравнение в виде \( \lg x^{1-\frac{2}{3}\lg x}=\lg \frac{1}{\sqrt[3]{100}} \) и логарифмируя обе части по основанию 10, получаем \( \left ( 1-\frac{2}{3}\lg x \right \)lg x =-\frac{1}{3}\lg 100, 2\lg ^{2}x-\lg x -2=0 \) Решая это уравнение как квадратное относительно \( \lg х \), находим \( \left ( \lg x \right )_{1}=-\frac{1}{2} \) или \( \left ( \lg x \right )_{2}=2 \), откуда \( x_{1}=10^{-\frac{1}{2}}=\frac{1}{\sqrt{10}}, x_{2}=10^{2}=100 \)