№15800
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить уравнения: \( 2\log _{x}27-3\log _{27}x=1 \)
Ответ
\( \frac{1}{27} ; 9 )\
Решение № 15798:
ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 27. Имеем \( \frac{2}{\log _{x}27}-3\log _{27}x-1=0\Rightarrow 3\log _{27}^{2}x+\log _{27}x-2=0 \) Решая это уравнение как квадратное относительно \( \log _{27}x \), получаем \( \left (\log _{27}x \right )_{1}=-1 \), откуда \( x_{1}=\frac{1}{27} \), или \( \left (\log _{27}x \right )_{2}=\frac{2}{3} \), откуда \( x_{2}=27^{\frac{2}{3}}=9 \)