№15799
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Решить уравнения: \( \sqrt{\log _{5}^{2}x+\log _{x}^{2}5+2}=2.5 \)
Ответ
\( \frac{1}{25} ;\frac{1}{\sqrt{5}} ; \sqrt{5} ; 25 )\
Решение № 15797:
ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 5. Из условия получаем \( \sqrt{\log _{5}^{2}x+\frac{1}{\log _{x}^{2}5}+2}=2.5 \Leftrightarrow \sqrt{\frac{\log _{5}^{4}x+2\log _{5}^{2}x+1}{\log _{5}^{2}x}}=2.5 \Leftrightarrow \sqrt{\left ( \frac{\log _{5}^{2}x+1}{\log _{5}x} \right )^{2}}=2.5 \Leftrightarrow \frac{\log _{5}^{2}x+1}{\left | \log _{5}x \right |}=2.5 \) Получаем 2 случая: \( \left\{\begin{matrix} \log _{5}x< 0, & & \\ \log _{5}^{2}x+2.5\log _{5}x+1=0 & & \end{matrix}\right. \Rightarrow \left ( \log _{5}x \right )_{1}=\frac{1}{2}< 0, \left ( \log _{5}x \right )_{2}=-2< 0 \), откуда \( x_{1}=\frac{1}{\sqrt{5}} , x_{2}=\frac{1}{25} . \left\{\begin{matrix} \log _{5}x> 0, & & \\ \log _{5}^{2}x-2.5\log _{5}x+1=0 & & \end{matrix}\right. \Rightarrow \left ( \log _{5}x \right )_{3}=\frac{1}{2}> 0 , \left ( \log _{5}x \right )_{4}=2> 0 \), откуда \( x_{3}=\sqrt{5} , x_{4}=25 \)