№15797
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решить системы уравнений: \( \left\{\begin{matrix} 4^{x+y}=2^{y-x} & & \\ 4^{\log _{\sqrt{2}x}}=y^{4}-5 & & \end{matrix}\right. \)
Ответ
\( \frac{1}{2}; -\frac{3}{2} )\
Решение № 15795:
ОДЗ: \( x> 0 \) Из условия \( \left\{\begin{matrix} 2^{2x+2y}=2^{y-x} & & \\ 2^{\log _{2}x^{4}}=y^{4}-5 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} 2x+2y=y-x & & \\ x^{4}=y^{4}-5 & & \end{matrix}\right. \Rightarrow y=-3x \) Из второго уравнения \( x^{4}=\left ( -3x \right )^{4}-5, x^{4}=\frac{1}{16} \), откуда, учитывая ОДЗ, получаем \( x=\frac{1}{2}, y=-\frac{3}{2} \)