Задача №15796

№15796

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Решить уравнения: \( 4\log _{4}^{2}\left ( -x \right )+2\log _{4}\left ( x^{2} \right )=-1 \)

Ответ

\( -\frac{1}{2} )\

Решение № 15794:

ОДЗ: \( \left\{\begin{matrix} -x> 0, & & \\ x^{2}> 0 & & \end{matrix}\right. \Leftrightarrow x< 0 \) Так как по ОДЗ \( x< 0 \), то имеем \( 4\log _{4}^{2}\left ( -x \right )+4\log _{4}\left ( -x \right )+1=0 \Leftrightarrow \left ( 2\log _{4}\left ( -x \right )+1 \right )^{2}=0 \Leftrightarrow 2\log _{4}\left ( -x \right )=-1, \log _{4}\left ( -x \right )=-\frac{1}{2} \) Отсюда \( -x=4^{-1/2}=\frac{1}{2}, x=-\frac{1}{2}\)

Поделиться в социальных сетях

Комментарии (0)