Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15934: Эта точка — основание высоты, проведенной из вершины \(A\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: \(45^{o}, 45^{o}, 90^{o}\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15936: Проведите медиану из вершины прямого угла.
Ответ: \(30^{o}, 60^{o}\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15937: \(BK ⊥ MN\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: Окружность, построенная на отрезке с концами в данных точках как на диаметре.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15939: Пусть \(M\) — данная точка окружности с центром \(O\) (рис. 146), \(AB\) — данная хорда. Если \(AB\) — диаметр, то искомая хорда — также диаметр. Если \(AB\) — хорда, не являющаяся диаметром, \(MN\) — искомая хорда, а \(K\) — ее середина, то \(OK ⊥ MN\), т. е. радиус \OM\ виден из точки \(K\) под прямым углом, значит, середина искомой хорды \(MN\) лежит на окружности с диаметром \(OM\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15940: Пусть \(P\) — точка пересечения биссектрис треугольника \(ABC\) (рис. 149), а \(Q\) — точка пересечения биссектрис внешних углов при вершинах \(B\) и \(C\). Тогда отрезок \(PQ\) виден из точек \(B\) и \(C \) под прямым углом
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15941: \(OK, OL, OM и ON\) — биссектрисы равнобедренных треугольников \(AOB, BOC, COD и DOA\), проведенные к основаниям (рис. 150).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15942: Окружность с центром \(B\) и радиусом \(BA\). Указание. Если точка \(M\) симметрична точке \(A\) относительно некоторой прямой (рис. 152), проходящей через точку \(B\), то \(MB = BA\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15943: Предположим, что нужная секущая построена (рис. 153). Пусть \(O_{1}\) и \(O_{2}\) — центры данных окружностей, \(r\) и \(R\) — их радиусы \((r < R)\), \(M\) — общая точка этих окружностей, \(A\) и \(B\) — концы секущей (\(A\) на первой окружности, \(B\) — на второй), проходящей через точку \(M\), \(AB = a\) — данный отрезок. Пусть \(P\) и \(Q\) — проекции точек \(O_{1}\) и \(O_{2}\) на прямую \(AB\). Тогда \(P\) и \(Q\) — середины хорд \(AM\) и \(BM\) данных окружностей. Если \(F\) — проекция точки \(O_{1}\) на прямую \(O_{2}Q\), то в прямоугольном треугольнике \(O_{1}FO_{2}\) известен катет: \(O_{1}F = PQ = \frac{1}{2}AB = \frac{1}{2}a. Отсюда вытекает следующий способ построения. Строим прямоугольный треугольник \(O_{1}FO_{2}\) по гипотенузе \(O_{1}O_{2} и катету \(O_{1}F = \frac{1}{2}a\) и через точку \(M\) проводим прямую, параллельную \(O_{1}F\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 12
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {1,5;0,4;2/3}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, Середина отрезка,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {2;0,5;0,25}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {3,5;8,5}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 6
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {2;4}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {1, 3, 5 или 7}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, построение отрезков с помощью линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {6 = 2 · 5−2 · 2}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, построение отрезков с помощью линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {8 = 2·11−2·7}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, построение отрезков с помощью линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {5 = 7·7−4·11}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 2
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, Середина отрезка,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 2.5
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {3/7;4/7}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {2/7} и {5/7}; {2/}3 и {5/3}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {m/(m+n) и n/(m + n); m/(m − n) и n/(m − n); m/(n − m) и n/(n − m)}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков, длины отрезков и их отношения,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 2/3
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, отрезки. Измерение отрезков,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: На луче {MA} без точки {M} ({M} – середина отрезка {AB})
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №15961: По условию две данные прямые \( l_{1}\) и \(l_{2}\) пересекаются в некоторой точке \(О\). Третья прямая \(l_{3}\) либо проходит через точку \(О\) (рис. 1, а), либо не проходит через эту точку. Во втором случае прямая \(l_{3}\) пересекает прямые \(l_{1}\) и \(l_{2}\) в разных точках (рис. 1, б), поскольку единственная общая точка прямых \(l_{1}\) и \(l_{2}\)- это точка \(О\).
В первом случае прямые имеют одну общую точку, а во втором случае прямые имеют три общие точки.
Ответ: Одну или три.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №15962: Пусть \(О\) — точка пересечения прямых \(АВ\) и \(CD\) (рис. 2). Прямая \(АВ\) пересекает отрезок \(СD\), поэтому точка \(О\) лежит между точками \(С\) и \(D\), т. е. она лежит на отрезке \(CD\). Прямая \(CD\) пересекает отрезок \(АВ\), поэтому точка \(О\) лежит между точками \(А\) и \(В\), т. е. она лежит на отрезке \(АВ\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №15963: Как было показано при разборе примера 1, возможны два случая: три прямые пересекаются либо в одной точке, либо в трёх точках. В первом случае они разделяют плоскость на 6 частей, а во втором на 7 частей.
Ответ: На 6 или на 7.