Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 60
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15906: Примените теорему о внешнем угле треугольника
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: \(R\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: \(90^{o}\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: \(120^{o}\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15910: Обозначим \(∠ACD = \alpha\) (рис. 140). Тогда \(∠BOC = ∠BCO = \alpha\), \(∠OAB = ∠ABO = ∠BCO + ∠BOC = 2\alpha\), \(∠AOD = ∠OAC + ∠ACO = 2\alpha + \alpha = 3\alpha\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15911: Опустите перпендикуляр из центра окружности на данную прямую.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15912: Опустите перпендикуляры из центра окружности на данные хорды.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15913: Диаметр, перпендикулярный хорде, делит ее пополам.
Ответ: 24
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15914: Пусть \(O\) — центр окружности, \(AB и CD\) — данные хорды, \(M и N\) — их середины, \(K\) — точка пересечения хорд (рис. 141). Докажите равенство прямоугольных треугольников \(KOM\) и \(NMO\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15915: Пусть \(N\) и \(M\) — основания перпендикуляров, опущенных из центр \(O\) окружности на данные хорды, \(A\) — точка пересечения хорд (рис. 142). Тогда \(N\) и \(M\) — середины хорд, а все стороны четырехугольника \(OMAN\) равны (это квадрат). Следовательно, \(ON = AM =\frac{1}{2}(a + b) − a =\frac{1}{2}(b − a)\)
Ответ: \(\frac{1}{2}(b − a)\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15916: Окружность, концентрическая данной
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15917: Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: Окружность с диаметром \(AB\) без точек \(A\) и \(B\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15919: Отрезок \(BC\) виден из точек \(M\) и \(N\) под прямым углом.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 8
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: \(8\) и \(6\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15922: Так как \(AC || BD\), то \(∠BAC = ∠ABD\), поэтому прямоугольные треугольники \(ABC\) и \(BAD\) равны по гипотенузе и острому углу (рис. 143). Значит, \(AC = BD\). Кроме того, значит, \(CD\) — диаметр \(∠CAD = ∠CAB + ∠BAD = ∠CAB + ∠ABC = 90^{o}\) ,
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15923: Биссектрисы смежных углов взаимно перпендикулярны.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 1
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15925: Высота равнобедренного треугольника, проведенная к основанию, является также медианой
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15927: Если высота треугольника является также медианой, то треугольник равнобедренный.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 60
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15929: Перпендикуляры \(OM\) и \(ON\) (рис. 144), опущенные из центра \(O\) окружности на равные хорды \(AB\) и \(CD\) соответственно, равны и делят эти хорды пополам, поэтому прямоугольные треугольники \(POM\) и \(PON\) равны по катету и гипотенузе, значит, \(PM = PN\). Следовательно, \(PA = PM +MA = PM + \frac{1}{2}AB = PN + \frac{1}{2}CD = PN +ND = PD\)и \(PB = PA − AB = PD − CD = PC\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: 25
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15931: Прямоугольные треугольники \(AMD\) и \(AND\) равны
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: Точка пересечения биссектрис треугольника \(ABC\)
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,
Задача в следующих классах: 7 класс 8 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №15933: Пусть \(O\) и \(Q\) — соответственно центры описанной и вписанной окружностей треугольника \(ABC\) (рис. 145), причем \(O\) и \(Q\) симметричны относительно прямой \(BC\). Обозначим \(∠OBC = ∠QBC = \alpha\). Поскольку треугольник \(BOC\) равнобедренный, то \(∠QCB = ∠OCB = ∠OBC = \alpha\), а так как \(BQ\) — биссектриса угла \(ABC\), то \(∠ABC = 2\alpha\). Аналогично, \(∠ACB = 2\alpha\). Значит, треугольник \(ABC\) равнобедренный, его биссектриса \(AM\) является высотой, а точки \(Q\) и \(M\) лежат на отрезке \(OA\). Поскольку треугольник \(AOB\) также равнобедренный (\(OA = OB \)как радиусы одной окружности), то \(∠OBA = ∠OAB\), или \(90^{o} − 2\alpha = 3\alpha\). Откуда находим, что \(\alpha = 18^{o}\). Следовательно, \(∠ACB = ∠ABC = = 2\alpha = 36^{o}\)
Ответ: \(36^{o}, 36^{o}, 108^{o}\)