Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: дуги окружности, заключенные между параллельными хордами, равны;

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите следующие свойства окружности: хорды, удаленные от центра окружности на равные расстояния, равны.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

Пока решения данной задачи,увы,нет...

Ответ: 60

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку \(A\) окружности с центром \(O\) проведены диаметр \(AB\) и хорда \(AC\). Докажите, что угол \(BAC\) вдвое меньше угла \(BOC\).

Решение №15906: Примените теорему о внешнем угле треугольника

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Угол между радиусами \(OA\) и \(OB\) окружности равен \(60^{o}\). Найдите хорду \(AB\), если радиус окружности равен \(R\).

Пока решения данной задачи,увы,нет...

Ответ: \(R\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите угол между радиусами \(OA\) и \(OB\), если расстояние от центра \(O\) окружности до хорды \(AB\): вдвое меньше \(AB\);

Пока решения данной задачи,увы,нет...

Ответ: \(90^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите угол между радиусами \(OA\) и \(OB\), если расстояние от центра \(O\) окружности до хорды \(AB\): вдвое меньше \(OA\).

Пока решения данной задачи,увы,нет...

Ответ: \(120^{o}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Дана окружность с центром \(O\). На продолжении хорды \(AB\) за точку \(B\) отложен отрезок \(BC\), равный радиусу. Через точки \(C\) и \(O\) проведена секущая \(CD\) (\(D\) — точка пересечения с окружностью, лежащая вне отрезка \(CO\)). Докажите,что \(∠AOD = 3∠ACD\).

Решение №15910: Обозначим \(∠ACD = \alpha\) (рис. 140). Тогда \(∠BOC = ∠BCO = \alpha\), \(∠OAB = ∠ABO = ∠BCO + ∠BOC = 2\alpha\), \(∠AOD = ∠OAC + ∠ACO = 2\alpha + \alpha = 3\alpha\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.

Решение №15911: Опустите перпендикуляр из центра окружности на данную прямую.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Равные хорды окружности с центром \(O\) пересекаются в точке \(M\). Докажите, что \(MO\) — биссектриса угла между ними.

Решение №15912: Опустите перпендикуляры из центра окружности на данные хорды.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая, проходящая через общую точку \(A\) двух окружностей, пересекает вторично эти окружности в точках \(B\) и \(C\) соответственно. Расстояние между проекциями центров окружностей на эту прямую равно \(12\). Найдите \(BC\), если известно, что точка \(A\) лежит на отрезке \(BC\).

Решение №15913: Диаметр, перпендикулярный хорде, делит ее пополам.

Ответ: 24

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

Решение №15914: Пусть \(O\) — центр окружности, \(AB и CD\) — данные хорды, \(M и N\) — их середины, \(K\) — точка пересечения хорд (рис. 141). Докажите равенство прямоугольных треугольников \(KOM\) и \(NMO\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на отрезки, равные \(a\) и \(b\) \((a < b)\). Найдите расстояние от центра окружности до каждой хорды.

Решение №15915: Пусть \(N\) и \(M\) — основания перпендикуляров, опущенных из центр \(O\) окружности на данные хорды, \(A\) — точка пересечения хорд (рис. 142). Тогда \(N\) и \(M\) — середины хорд, а все стороны четырехугольника \(OMAN\) равны (это квадрат). Следовательно, \(ON = AM =\frac{1}{2}(a + b) − a =\frac{1}{2}(b − a)\)

Ответ: \(\frac{1}{2}(b − a)\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Рассматриваются все хорды окружности, имеющие заданную длину. Найдите геометрическое место их середин.

Решение №15916: Окружность, концентрическая данной

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что центр окружности, описанной около прямоугольного треугольника, — середина гипотенузы.

Решение №15917: Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите геометрическое место точек \(M\), из которых данный отрезок \(AB\) виден под прямым углом (т. е. \(∠AMB = 90^{o}\)

Пока решения данной задачи,увы,нет...

Ответ: Окружность с диаметром \(AB\) без точек \(A\) и \(B\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(BM\) и \(CN\) — высоты треугольника \(ABC\). Докажите, что точки \(B\), \(N\), \(M\) и \(C\) лежат на одной окружности.

Решение №15919: Отрезок \(BC\) виден из точек \(M\) и \(N\) под прямым углом.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через точку \(A\), лежащую на окружности, проведены диаметр \(AB\) и хорда \(AC\), причем \(AC = 8\) и \(∠BAC = 30^{o}\) . Найдите хорду \(CM\), перпендикулярную \(AB\).

Пока решения данной задачи,увы,нет...

Ответ: 8

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные \(12\) и \(16\). Найдите расстояния от центра окружности до этих хорд.

Пока решения данной задачи,увы,нет...

Ответ: \(8\) и \(6\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Известно, что \(AB\) — диаметр окружности, а хорды \(AC\) и \(BD\) параллельны. Докажите, что \(AC = BD\), а \(CD\) — также диаметр.

Решение №15922: Так как \(AC || BD\), то \(∠BAC = ∠ABD\), поэтому прямоугольные треугольники \(ABC\) и \(BAD\) равны по гипотенузе и острому углу (рис. 143). Значит, \(AC = BD\). Кроме того, значит, \(CD\) — диаметр \(∠CAD = ∠CAB + ∠BAD = ∠CAB + ∠ABC = 90^{o}\) ,

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Биссектрисы внутреннего и внешнего угла при вершине \(A\) треугольника \(ABC\) пересекают прямую \(BC\) в точках \(P\) и \(Q\). Докажите, что окружность, построенная на отрезке \(PQ\) как на диаметре, проходит через точку \(A\).

Решение №15923: Биссектрисы смежных углов взаимно перпендикулярны.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На катете \(AC\) прямоугольного треугольника \(ABC\) как на диаметре построена окружность, пересекающая гипотенузу \(AB\) в точке \(K\). Найдите \(CK\), если \(AC = 2\) и \(∠A = 30^{o}\) .

Пока решения данной задачи,увы,нет...

Ответ: 1

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что окружность, построенная на стороне равностороннего треугольника как на диаметре, проходит через середины двух других сторон треугольника.

Решение №15925: Высота равнобедренного треугольника, проведенная к основанию, является также медианой

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 1

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

Решение №15927: Если высота треугольника является также медианой, то треугольник равнобедренный.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В окружности проведены хорды \(AB\) и \(CD\). Расстояние между равными параллельными хордами \(AB\) и \(CD\) равно радиусу окружности. Найдите угол между пересекающимися прямыми \(AC\) и \(BD\).

Пока решения данной задачи,увы,нет...

Ответ: 60

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Продолжения равных хорд \(AB\) и \(CD\) окружности соответственно за точки \(B\) и \(C\) пересекаются в точке \(P\). Докажите, что треугольники \(APD\)и \(BPC\) равнобедренные.

Решение №15929: Перпендикуляры \(OM\) и \(ON\) (рис. 144), опущенные из центра \(O\) окружности на равные хорды \(AB\) и \(CD\) соответственно, равны и делят эти хорды пополам, поэтому прямоугольные треугольники \(POM\) и \(PON\) равны по катету и гипотенузе, значит, \(PM = PN\). Следовательно, \(PA = PM +MA = PM + \frac{1}{2}AB = PN + \frac{1}{2}CD = PN +ND = PD\)и \(PB = PA − AB = PD − CD = PC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Продолжения хорд \(AB\) и \(CD\) окружности с диаметром \(AD\) пересекаются под углом \(25^{o}\). Найдите острый угол между хордами \(AC\) и \(BD\).

Пока решения данной задачи,увы,нет...

Ответ: 25

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, построенная на биссектрисе \(AD\) треугольника \(ABC\) как на диаметре, пересекает стороны \(AB\)и \(AC\) соответственно в точках \(M\)и \(N\), отличных от \(A\). Докажите, что \(AM = AN\)

Решение №15931: Прямоугольные треугольники \(AMD\) и \(AND\) равны

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Найдите внутри треугольника \(ABC\)такую точку \(P\), чтобы общие хорды каждой пары окружностей, построенных на отрезках \(PA\), \(PB\) и \(PC\) как на диаметрах, были равны.

Пока решения данной задачи,увы,нет...

Ответ: Точка пересечения биссектрис треугольника \(ABC\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, Основные свойства и определения круга,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Центр окружности, описанной около треугольника, симметричен центру окружности, вписанной в этот треугольник, относительно одной из сторон. Найдите углы треугольника.

Решение №15933: Пусть \(O\) и \(Q\) — соответственно центры описанной и вписанной окружностей треугольника \(ABC\) (рис. 145), причем \(O\) и \(Q\) симметричны относительно прямой \(BC\). Обозначим \(∠OBC = ∠QBC = \alpha\). Поскольку треугольник \(BOC\) равнобедренный, то \(∠QCB = ∠OCB = ∠OBC = \alpha\), а так как \(BQ\) — биссектриса угла \(ABC\), то \(∠ABC = 2\alpha\). Аналогично, \(∠ACB = 2\alpha\). Значит, треугольник \(ABC\) равнобедренный, его биссектриса \(AM\) является высотой, а точки \(Q\) и \(M\) лежат на отрезке \(OA\). Поскольку треугольник \(AOB\) также равнобедренный (\(OA = OB \)как радиусы одной окружности), то \(∠OBA = ∠OAB\), или \(90^{o} − 2\alpha = 3\alpha\). Откуда находим, что \(\alpha = 18^{o}\). Следовательно, \(∠ACB = ∠ABC = = 2\alpha = 36^{o}\)

Ответ: \(36^{o}, 36^{o}, 108^{o}\)

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »