Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что уравнение ускорения равно двойной производной от уравнения колебаний: \(a={x}''\). Определите ускорение точки через \(3\) с от начала колебаний, если уравнение движения имеет вид: \(x=0,05\cdot \cos (\frac{2\cdot \pi \cdot t}{3})\) (м).

Решение №22388: Для того, чтоны определить ускорение в момент времения, необходимо взять двойную производную от уравнения гармонических колебаний:\({x}'=-0,05\cdot\frac{2\cdot \pi }{3} \cdot \sin (\frac{2\cdot \pi \cdot t}{3});{x}''=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})\). Решение полученного уравнение даст значение ускорения: \(a=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos \cdot (\frac{2\cdot \pi \cdot 3}{3})=-0,22\)

Ответ: -0.22

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Рациональные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что полная механическая энергия \(E\) пружинного маятника рассчитывается по формуле: \(E=\frac{k\cdot A^{2}}{2}\), где \(k\) -жесткость пружины, \(A\) - амплитуда колебаний. Рассчитайте полную энергию груза массой \(0,2\) кг, если он колеблется на пружине жесткостью \(500\) Н/м с амплитудой \(10\) см.

Решение №22389: Для того, чтобы найти полную энергию груза, необходимо решить уравнение: \(E=\frac{k\cdot A^{2}}{2}\). По условию задачи \(m=0,2\) кг, \(k=500\) Н/м, \(A=10\) см. Подставляем данные в исходное уравнение и решаем его: \(E=\frac{k\cdot A^{2}}{2}=\frac{500\cdot 0,1^{2}}{2}=2,5\) Дж.

Ответ: 2.5

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Рациональные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что разность фаз волны \(\Delta \varphi \) в двух точках пространства определяется формулой: \(\Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }\) , где \(l\) - расстояние на котором точки находятся друг от друга, \(\lambda\) - длина волны. А скорость распростронения колебаний \(v\) определяется как произведение длины волны \(\lambda\) на частоту колебаний \(\nu \): \(v=\lambda \cdot \nu \). Рассчитайте разность фаз волны в двух точках пространства, остоящих друг от друга на расстоянии \(20\) см и расположенных на прямой, совпадающей с направлением распространения волны, если волна с частотой \(5\) Гц распространяется в пространстве со скоростью \(3\) м/с.

Решение №22390: Для того, чтобы рассчитать разность потенциалов, воспользуемся уравнением: \(\Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }\). По условию задачи \(\Delta l=20\) см. Значение \(\lambda \) выразим из формулы: \(v=\lambda \cdot \nu => \lambda =\frac{v}{\nu }\), где \(v=3\) м/с, \(\nu =5\) Гц. Подставим полученные данные в исходное уравнение и решим его: \Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }=\frac{2\cdot \pi \cdot \Delta l}{\frac{v}{\nu }}=\frac{2\cdot \pi \cdot \Delta l\cdot \nu }{v}=\frac{2\cdot 3,14\cdot 0,2\cdot 5}{3}=2,09\) рад.

Ответ: 2.09

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Рациональные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что расстояние \(L\) рассчитывается по формуле: \(L=v\cdot t\), где \(t\) - время, а \(v\) - это скорость, которая определяется как произведение длины волны \(\lambda\) на частоту колебаний \(\nu \): \(v=\lambda \cdot \nu \). Частота колебаний \(\nu \) равна отношению числу всплесков \(N\) к времени \(\tau\): \(v=\frac{N}{\tau }\). Определите, как далеко от берега находилась лодка, если на озере в безветренную погоду с нее бросили тяжелый якорь и от места бросания якоря пошли волны. А человек, стоящий на берегу, заметил, что волна дошла до него через \(50\) с, расстояние между соседними гребнями волны \(0,5\) м, а за \(5\) с было \(20\) всплесков о берег.

Решение №22391: Расстояние от лодки до берега \(L\) будем находить по формуле: \(L=v\cdot t\). Значение скорости \( v\) выражаем через формулу: \(v=\lambda \cdot \nu \). Частоту колебаний выражаем формулой: \(v=\frac{N}{\tau }\). Подставим полученные данные в исходное уравнение: \(L=v\cdot t=\frac{\lambda \cdot N\cdot t}{\tau }=\frac{0,5\cdot 20\cdot 50}{5}=100\) м.

Ответ: 100

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Рациональные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что уравнение колебаний заряда конденсатора при колебаниях в контуре в общем виде имеет следующий вид: \(Q=Q_{max}\cdot \cos (\omega \cdot t)\), где \(Q_{max}\) - максимальное значение заряда конденсатора, \(\omega\) - циклическая частота колебаний. Частота колебаний в контуре \(\nu\) связана с циклической частотой колебаний формулой: \(\nu =\frac{\omega }{2\cdot \pi }\). Определите частоту электромагнитных колебаний в контуре, если изменение конденсатора в колебательном контуре происходит по закону: \(Q=10^{-6}\cdot \cos (5,024\cdot 10^{7}\cdot t)\)/

Решение №22392: Чтобы найти значение частоты колебаний в контуре \(\nu\) воспользуемся формулой: \(\nu =\frac{\omega }{2\cdot \pi }\). По условию задачи дано уравнение колебаний заряда конденсатора в общем виде и конкретное уравнение, описывающее изменение заряда конденсатора в колебательном контуре. Сравнивая два уравнения, делаем вывод, что циклическая частота колебаний \(\omega =5,024\cdot 10^{7}\cdot t\). Подставляем полученные данные в исходное уравнение и решаем его: \(\nu =\frac{\omega }{2\cdot \pi }=\frac{5,024\cdot 10^{7}\cdot t}{2\cdot 3,14}=8\cdot 10^{6}\) Гц \(=8\) МГц.

Ответ: 8

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Показательные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что показатель преломления данной среды относительно вакуума называется абсолютным показателем преломления данной среды \(n\), его можно определить как отношение скорости света в вакууме \(c\), равной \(3 \cdot 10^{8}\) м/с, к скорости света в данной среде \(v\): \(n=\frac{c}{v}\). А скорость света в данной среде \(v\) равна произведению длины волны света в данной среде \( \lambda\) (при преломлении она меняется) на частоту света \(\nu \) (частота при переходе из одной среды в другую не изменяется), поэтому: \(v=\lambda \cdot \nu \). Определите длину волны монохроматического света с частотой \(1,5\cdot 10^{15}\) в пластинке, прозрачной для этого света и имеющий показатель преломления \(1,25\). Скорость света равна \(3\cdot 10^{8}\) м/с.

Решение №22393: По условию задачи дано, что показатель преломления данной среды равен: \(n=\frac{c}{v}\). Выражаем отсюда значение скорости света: \(v=\frac{c}{n}\). Также скорость света можно определить по формуле: \(v=\lambda \cdot \nu \). Приравниваем эти два выражения между собой и получаем уравнение с неизвестным искомым значением длины волны \(\lambda\): \(\frac{c}{n}=\lambda \cdot \nu => \lambda =\frac{c}{n\cdot \nu }=\frac{3\cdot 10^{8}}{1,25\cdot 1,5\cdot 10^{15}}=1,6\cdot 10^{-7}\) м \( =160\) нм.

Ответ: 160

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что закон преломления света выглядит следующим образом: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta \), где \(\alpha\) и \(\beta\) - угод падения и угол преломления, \(n_{1}\) и \(n_{2}\) - показатели преломления среды. Определите угол преломления луча света на границу стекло-воздух, если угол падения равен \(30^{\circ}\), показатель преломления стекла \(1,5\), а показатель преломления воздуха равен \(1\).

Решение №22394: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\beta \) в уравнении: \( n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \beta=\frac{n_{1}\cdot \sin \alpha }{n_{2}};\beta =\arcsin (\frac{n_{1}\cdot \sin \alpha }{n_{2}})=\arcsin (\frac{1,5\cdot \sin 30^{\circ}}{1})=48,6^{\circ}\).

Ответ: \(48,6^{\circ}\)

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Тригонометрические уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что закон преломления света выглядит следующим образом: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta \), где \(\alpha\) и \(\beta\) - угод падения и угол преломления, \(n_{1}\) и \(n_{2}\) - показатели преломления среды. Определите под каким углом следует направить луч на поверхность стекла, чтобы угол преломления получился равным \(35^{\circ}\), если показатель преломления стекла \(1,5\), а показатель преломления воздуха равен \(1\).

Решение №22395: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\alpha \) в уравнении: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \alpha =\frac{n_{2}\cdot \sin \beta }{n_{1}};\alpha =\arcsin (\frac{n_{2}\cdot \sin \beta }{n_{1}})=\arcsin (\frac{1,5\cdot \sin 35^{\circ}}{1})=59,4^{\circ}\)

Ответ: \(59,4^{\circ}\)

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Показательные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Согласно формуле Планка, энергия фотона \(E\) пропорциональна частоте колебаний \(\nu \) и определяется следующим образом: \(E=h\cdot \nu, где \(h\) - это постоянная Планка, равная \(6,62\cdot 10^{-34}\) Дж*с. Также энергия фотона \(E\) связана с массой \(m\): \(E=m\cdot c^{2}\), где \(c\) - это скорость света, равная \(3\cdot 10^{8}\) м/с. Определите частоту колебаний световой волны, масса фотона которой равна \(3,31\cdot 10^{-36}\) кг.

Решение №22396: По условию дано, что энергия фотона \(E\) определяется по формуле: \(E=h\cdot \nu . Также энергия связана с массой и находится по формуле: \(E=m\cdot c^{2}\). Приравниваем два выражения и получаем уравнение с неизвестной искомой частотой колебаний: \(h\cdot \nu= m\cdot c^{2}=> \nu =\frac{m\cdot c^{2}}{h}=\frac{3,31\cdot 10^{-36}\cdot (3\cdot 10^{8})^{2}}{6,62\cdot 10^{-34}}=4,5\cdot 10^{14}\) Гц.

Ответ: \(4,5\cdot 10^{14}\)

Экзамены с этой задачей: Математика ЕГЭ математика профиль Задачи с прикладным содержанием Показательные уравнения и неравенства

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Согласно формуле Планка, энергия фотона \(E\) пропорциональна частоте колебаний \(\nu \) и определяется следующим образом: \(E=h\cdot \nu, где \(h\) - это постоянная Планка, равная \(6,62\cdot 10^{-34}\) Дж*с. Частота колебаний равна отношению скорости света \(c\) к длине волны \(\lambda \): \(\nu =\frac{c}{\lambda }\). Определите длину волны излучения, если энергия фотона равна \(3\) эВ, а скорость света \(с=3\cdot 10^{8}\) м/с.

Решение №22397: Для того, чтобы найти неизвестное значение длины волны, воспользуемся формулой: \(\nu =\frac{c}{\lambda }\). Скорость света \(с=3\cdot 10^{8}\)м/с, значение частоты \(\nu\) выразим из формулы: \(\nu=\frac{E}{h}\). Подставим полученные выражения в исходное уравнение и решаем его: \(\frac{E}{h}=\frac{c}{\lambda }=> \lambda =\frac{h\cdot c}{E}=\frac{6,62\cdot 10^{-34}\cdot 3\cdot 10^{8}}{3\cdot 1,6\cdot 10^{-19}}=414\cdot 10^{-19}\) м \(=414\) нм.

Ответ: 414