Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21708: \(a=2, a=-2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21709: \(a\in (-\infty ; 0]\cup \left ( \frac{\pi }{2};+\infty \right )\cup \left \{ \frac{\pi }{4} \right \}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21710: \(a\in (-\infty ; -2)\cup (2; \infty )\cup {-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21711: \((0;0); (-1; 0); (1; 0)\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21712: \(a\in (-\infty ; 6)\cup (8; +\infty )\cup {7}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21713: \(При \(-\frac{\sqrt{}}{2}\leqslant a\leqslant \frac{1}{2}, x=\frac{\pi n}{2}+(-1)^{n}\frac{1}{2}arcsin\frac{1-4a^{2}}{2}+arcsin\left ( a+\frac{1}{2} \right ), y=-\frac{\pi n}{2}+(-1)^{n+1}\frac{1}{2}arcsin\frac{1-4a^{2}}{2}+arcsin\left ( a+\frac{1}{2} \right )\)\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21714: \(если \(a=2\pi l, x=\pm \frac{\pi }{3}+\pi k+\pi l, y=\pm \frac{\pi }{3}-\pi k-\pi l, k, l\in Z;\) если \(a=\pi (2l+1), x=\pm \frac{\pi }{6}+\frac{\pi (2l+1)}{2}+\pi k; y=\frac{\pi (2l+1)}{2}-\pi k\pm \frac{\pi }{6}, k, l\in Z;\) если \(a\neq \pi m\) решений нет\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21715: \(если \(a< 2,\) решений нет; если \(a\geqslant 2, x=\frac{\pi }{2}+2\pi k, y=(-1)^{k}arcsin\frac{a-3}{a-1}-\pi k, k\in Z;\) или \(x=(-1)^{n}arcsin\frac{a-3}{a-1}+\pi n; y=\frac{\pi }{2}+\pi n, n\in Z\) \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21716: \(если \(a< \frac{1}{2}\) решений нет, если \(a\geqslant \frac{1}{2}, x=\frac{\pi }{2}+2\pi k, y=\pm arccos\frac{a-2}{a+1}+2\pi k, k\in Z\) или \(x=(-1)^{k}arcsin\frac{a-2}{a+1}+\pi n, y=2\pi n, n\in Z\) \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21717: \(a\in [-2\pi ; 0)\cup (2\pi ; 4\pi ]\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21718: \(a\in \left [ -\frac{3\pi }{2}; \frac{\pi }{2} \right ]\cup (2\pi ; 4\pi ]\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Тригонометрические уравнения с параметрами,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21719: \(-\frac{1}{3}; -\frac{5}{3}; \pm 1; \pm \sqrt{3}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21720: \(\left ( -\frac{4\pi }{3}+2\pi k; \frac{\pi }{3}+2\pi k \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21721: \(\left [ \frac{\pi }{4}+2\pi k; \frac{3\pi }{4}+2\pi k \right ], k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21722: \(\left ( -\frac{3\pi }{4}+2\pi k; -\frac{\pi }{4}+2\pi k \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21723: \((2\pi k; \pi +2\pi k), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21724: \(\frac{\pi }{2}+2\pi n, n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21725: \(\left [ arcsin\frac{1}{5}+2\pi n; \pi -arcsin\frac{1}{5}+2\pi n \right ], n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21726: \(\left ( \pi -arcsin\frac{4}{9}+2\pi n; 2\pi +arcsin\frac{4}{9}+2\pi n \right ), n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21727: \(\left [ -\frac{5\pi }{6}+2\pi n; \frac{\pi }{6}+2\pi n \right ], n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21728: \(\left ( -\frac{5\pi }{6}-2\pi k; \frac{\pi }{6}+2\pi k \right ), n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21729: \(2\pi n, n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21730: \(\varnothing \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21731: \(\left ( \frac{\pi }{6}-2\pi n; \frac{11\pi }{6}+2\pi n \right ), n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21732: \(\left ( \frac{\pi (2k-1)}{2}; \frac{\pi (3k-1)}{3} \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21733: \(\left ( \pi k; \frac{\pi (2k+1)}{2} \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21734: \(\left [\frac{\pi }{4}+\pi n; \frac{\pi }{2}+\pi n \right ), n\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21735: \(\left [\pi k-\frac{\pi }{4}; \frac{\pi }{2}+\pi k \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21736: \(\left ( \pi k; \frac{2\pi }{3}+\pi k \right ), k\in Z\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Нелин Е.П.,Роанин А.Н.,Куланин Е.Д.,Федин С.Н. Сборник задач по алгбере и началам математического анализа.10 класс.- М.:ИЛЕКСА 2014, - 448.: ил
Решение №21737: \(\left ( \frac{\pi }{6}+\pi k; \pi +\pi k \right ), k\in Z\)
Ответ: NaN