Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить системы уравнений: \( \left\{\begin{matrix} 8^{\log _{9}\left ( x-4y \right )}=1, & & \\ 4^{x-2y}-7*2^{x-2y}=8. & & \end{matrix}\right. \)

Решение №15873: ОДЗ: \( x-4y> 0 \) Из условия \( \left\{\begin{matrix} 8^{\log _{9}\left ( x-4y \right )}=8^{\circ} & & \\ \left ( 2^{x-2y} \right )-7*2^{x-2y}-8=0 . & & \end{matrix}\right. \) Из первого уравнения системы имеем \( \log _{9}\left ( x-4y \right )=0 \), откуда \( x-4y=1 \) Решая второе уравнение системы как квадратное относительно \( 2^{x-2y} \), получаем \( 2^{x-2y}=-1,\varnothing ; 2^{x-2y}=2^{3} \), откуда \( x-2y=3 \) Исходная система принимает вид \( \left\{\begin{matrix} x-4y=1, & & \\ x-2y=3 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} x=5, & & \\ y=1. & & \end{matrix}\right. \)

Ответ: \( \left ( 5; 1 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} x^{2y^{2}-1}=5, & & \\ x^{y^{2}+2}=125. & & \end{matrix}\right. \)

Решение №15874: ОДЗ: \( 0< x\neq 1 \) Логарифмируя первое и второе уравнения ситемы по основанию получаем \( \left\{\begin{matrix} \log _{5}x^{2y^{2}-1}=\log _{5}5, & & \\ \log _{5}x^{2y^{2}+2}=\log _{5}125, & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \left ( 2y^{2}-1 \right \)log _{5}x=1 & & \\ \left ( y^{2}+2 \right \)log _{5}x=3 & & \end{matrix}\right. \Rightarrow \log _{5}x=\frac{1}{2y^{2}-1} \) Из второго уравнения системы имеем \( \frac{y^{2}+2}{2y^{2}-1}=3. y^{2}=1 \), откуда \( y=\pm 1 \) Тогда \( \log _{5}x=1 \), т.е. \( x=5\)

Ответ: \( \left ( 5; 1 \right ), \left ( 5; -1 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \log _{y}x+\log _{x}y=2 & & \\ x^{2}-y=20 & & \end{matrix}\right. \)

Решение №15875: ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1 & & \\ 0< y\neq 1 & & \end{matrix}\right. \) Из первого уравнения имеем: \( \log _{y}x+\frac{1}{\log _{y}x}-2=0, \log _{y}^{2}x-2\log _{y}x+1=0, \left ( \log _{y}x-1 \right )^{2}=0 \), откуда \( \log _{y}x=1, x=y \) Из второго уравнения системы имеем \( y^{2}-y-20=0 \), откуда \( y_{1}=-4, y_{2}=5; y_{1}=-4 \) не подходит по ОДЗ. Тогда \( x=y=5 \)

Ответ: \( \left ( 5; 5 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \lg \left ( x^{2}+y^{2} \right )=2 & & \\ \log _{2}x-4\log _{2}3-\log _{2}y & & \end{matrix}\right. \)

Решение №15876: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right. \) Из первого уравнения системы уравнений имеем \( x^{2}+y^{2}=100 \) Из второго уравнения системы найдем \( \log _{2}\frac{x}{16}=\log _{2}\frac{3}{y} \), откуда \( \frac{x}{16}=\frac{3}{y}, x=\frac{48}{y} \) Далее получаем \( \left ( \frac{48}{y} \right )^{2}+y^{2}-100=0, y^{4}-100y^{2}+2304=0 \), откуда \( y_{1,2}=\pm 6, y_{3,4}=\pm 8; y_{2}=-6 , y_{4}=-8 \) не подходят по ОДЗ. Тогда \( x_{1}=8, x_{2}=6 \)

Ответ: \( \left ( 8; 6 \right ), \left ( 6; 8 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} \left ( x+y \right )*2^{y-2x}=6.25, & & \\ \left ( x+y \right )^{\frac{1}{2x-y}}=5. & & \end{matrix}\right. \)

Решение №15877: ОДЗ: \( \left\{\begin{matrix} 0< x+y\neq 1, & & \\ 2x-y\neq 0. & & \end{matrix}\right. \) Логарифмируя оба уравнения по основанию 10, имеем \( \left\{\begin{matrix} \lg \left ( x+y \right )*2^{y-2x}=\lg \left ( \frac{5}{2} \right )^{2} & & \\ \lg \left ( x+y \right )^{\frac{1}{2x-y}}=\lg 5 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \lg \left ( x+y \right )+\left ( y-2x \right \)lg 2=2\left ( \lg 5-\lg 2 \right ), & & \\ \frac{\lg \left ( x+y \right )}{2x-y}=\lg 5 & & \end{matrix}\right. \) Из второго уравнения системы получаем \( \lg \left ( x+y \right )=\left ( 2x-y \right \)lg 5 \), тогда\left ( 2x-y \right \)lg 5+\left ( y-2x \right \)lg 2=2\left ( \lg 5-\lg 2 \right ), \left ( 2x-y \right \)left ( \lg 5-\lg 2 \right )=2\left ( \lg 5-\lg 2 \right ), 2x-y=2 \) Исходная система принимает вид \( \left\{\begin{matrix} 2x-y=2, & & \\ \lg \left ( x+y \right )=2\lg 5, & & \end{matrix}\right. \left\{\begin{matrix} 2x-y=2, & & \\ x+y=25 & & \end{matrix}\right.\), откуда \( \left\{\begin{matrix} x=9, & & \\ y=16. & & \end{matrix}\right.\)

Ответ: \( \left ( 9; 16 \right ) )\

Решить системы уравнений: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=50 & & \\ \lg \left ( x-y \right )+\lg \left ( x+y \right )=2-\lg 5 & & \end{matrix}\right. \)

Решение №15878: ОДЗ: \( \left\{\begin{matrix} x-y> 0, & & \\ x+y> 0. & & \end{matrix}\right. \) Имеем: \( \left\{\begin{matrix} 10^{1+\lg \left ( x+y \right )}=\lg 50, & & \\ \lg \left ( x^{2}-y^{2} \right )=\lg 20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1+\lg \left ( x+y \right )=\lg 50, & & \\ x^{2}-y^{2}=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ \left ( x-y \right \)left ( x+y \right )=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x+y=5, & & \\ x-y=4, & & \end{matrix}\right. \), откуда \( x=\frac{9}{2}, y=\frac{1}{2} \)

Ответ: \( \left (\frac{9}{2}; \frac{1}{2} \right ) )\

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Диаметр окружности пересекает хорду под углом \(45^{\circ}\) и делит её на отрезки, равные 5 и 11. Найдите расстояние от центра окружности до хорды.

Решение №15879: Проведите из центра \(О\) окружности перпендикуляр \(ОМ\) к хорде. Тогда точка \(М\) — середина хорды, а расстояние от центра окружности до хорды равно \(ОМ\). Точка \(С\) пересечения хорды и диаметра делит хорду на отрезки длиной 5 и 11, поэтому \(СМ = З\) (рис. ниже). Треугольник \(СОМ\) равнобедренный прямоугольный, поэтому \(ОМ = СМ = З\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Хорда пересекает диаметр окружности под углом \(30^{\circ}\) и делит его на отрезки, равные 5 и 13. Найдите расстояние от центра окружности до хорды.

Решение №15880: Проведите из центра \(О\) окружности перпендикуляр \(ОМ\) к хорде. Тогда точка \(М\) — середина хорды, а расстояние от центра окружности до хорды равно \(ОМ\). Точка \(С\) пересечения хорды и диаметра делит диаметр на отрезки длиной 5 и 13, поэтому \(СО = 4\) (рис. ниже). Катет \(ОМ\) прямоугольного треугольника \(СОМ\) лежит против угла \(30^{\circ}\) , поэтому \(ОМ = \frac{1}{2} CO=2\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Докажите, что хорды окружности, удалённые от её центра на равные расстояния, равны.

Решение №15881: Пусть \(М\) и \(N\) — середины хорд \(АВ\) и \(CD\), \(О\) — центр окружности, \(ОМ = ОN\) . Тогда прямоугольные треугольники \(АОМ\) и \(CON\) равны по гипотенузе и катету (рис. ниже).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

Через точку \(Р\) проведены две прямые, на которых окружность высекает равные хорды \(АВ\) и \(CD\) (точка \(А\) лежит между \(Р\) и \(В\), точка \(С\) лежит между \(Р\) и \(D\)). Докажите, что \(РА = РС\).

Решение №15882: Пусть \(М\) и \(N\) — середины хорд \(АВ\) и \(CD\), \(О\) — центр окружности. Тогда прямоугольные треугольники \(АОМ\) и \(CON\) равны по гипотенузе и катету (рис. 131), поэтому прямоугольные треугольники \(РОМ\) и \(PON\) тоже равны по гипотенузе и катету.

Ответ: NaN