Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15330: \(x_{n} =(-1)^{n+1}\frac{2^{n}}{5n}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15331: \(x_{n} =(-1)^{n}\frac{n^{^{2}}}{\sqrt{n(n+1)}}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15332: \(x_{1} = -3\), \(x_{2} = -2\), \(x_{n} = 2(x_{n-2}+x_{n-1})\), \(x_{3} = -10\), \(x_{4} = -24\), \(x_{5} = -68\), \(x_{6} = -184\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15333: \(x_{n+1} = x_{n}\). \(x_{1} = 2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15334: \(x_{n} = x_{n-1}\). \(x_{1} = 2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15335: \(x_{n} = x_{n-1} - 2\). \(x_{1} = 9\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15336: \(x_{n} = x_{n-1} \). \(x_{1} = 5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15337: \(x_{n} = 3x_{n-1} \). \(x_{1} = 2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15338: \(x_{n} = x_{n-1}+7 \). \(x_{1} = 1\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15339: \(x_{n} = \frac{1}{2}x_{n-1} \). \(x_{1} = \frac{1}{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15340: \(x_{n} = -3x_{n-1} \). \(x_{1} = 3\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15341: 1;1,7;1,73;1,732
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15342: 2;1,8; 1,74;1,733
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15343: \(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} = 0,1 +0,11+0,111+0,1111+0,11111+0,111111+0,1111111=0,7654321\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15344: \(\frac{5}{14} = \frac{n+1}{3n+2} \Leftrightarrow 15n + 10 = 14n+14)\ \(n=4\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15345: \(\frac{14}{41} = \frac{n+1}{3n+2} \Leftrightarrow 42n + 28 = 41n+41)\ \(n=13\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15346: \(\frac{6}{13} = \frac{n+1}{3n+2} \Leftrightarrow 18n + 12 = 13n+13)\ \(5n=1\) т.е. \(n = \frac{1}{5}\) чего очевидно быть не может, так как \(n\epsilon N\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15347: \(\frac{8}{23} = \frac{n+1}{3n+2} \Leftrightarrow 23n + 23 = 24n+16)\ \(n=7\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15348: \(0=(2n - 1)(3n+2)\) \(n= \frac{1}{2}\) или \(n = -\frac{2}{3}\), чего, очевидно быть не может, так как \(n \in N\). Такого n не существуют, значит 0 - член последовательности
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15349: \(24=(2n - 1)(3n+2)\) \(6n^{2} + n - 26=0\) \(D = 1 + 624 = 625\): \(n_{1} = \frac{-1+25}{12} = 2\); \(n_{2} = \frac{-1-25}{2}< 0\) - не подходит, так как n — натуральное. Итак n = 2,24 — второй член последовательности.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15350: \(153=(2n - 1)(3n+2)\) \(6n^{2} + n - 155=0\) \(D = 1 + 3720 = 3721 = 61^{2}\): \(n_{1} = \frac{-1+61}{12} = 5\); \(n_{2} = \frac{-1-61}{12}< 0\) - не подходит, так как \(n \in N\). Итак, n = 5. 153 - пятый член последовательности.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15351: \(-2=(2n — 1)(3n+2)\) Оба множителя в правой части положительны( так как \(n \in N\)), а левая часть отрицательная. Такого быть не может. Таких n нет, (-2) — не член последовательности.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15352: \(x_{n} = 3+5(n-1) = 5n-2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15353: \(x_{n} = 3*x(n-1): x_{n} = 2*3^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15354: \(x_{n} = x(n-1) - 4;\) x_{n} = 11-4(n-1) = 15-4n\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15355: \(x_{n} = \frac{x_{n-1}}{2}\) x_{n} = \frac{3}{2^{n-1}}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: NaN