№15334
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Выпишите первые шесть членов последовательности \((x_{n})\), у которой \(х_{1} = -3\), \(х_{2}= -2\) и каждый член, начиная с третьего, равен удвоенной сумме двух предыдущих членов. Составьте рекуррентное задание последовательности.
Ответ
NaN
Решение № 15332:
\(x_{1} = -3\), \(x_{2} = -2\), \(x_{n} = 2(x_{n-2}+x_{n-1})\), \(x_{3} = -10\), \(x_{4} = -24\), \(x_{5} = -68\), \(x_{6} = -184\)